PYTHON BOOT CAMP

Module 5:

Loops

A

CS Jokes

VIA 9GAG.COM
-

BEING A PROGRAMMER

My mom said:
"Honey, please go to the market and buy 1 bottle of
milk. If they have eggs, bring 6"

| came back with 6 bottles of milk.

She said: "Why the hell did you buy 6 bottles of
milk?"

| said: "BECAUSE THEY HAD EGGS!!!!"

© Dr Jonathan Cazalas Module 5: Loops

page 2

Objectives

@ To write programs for executing statements repeatedly by using a while loop
(§5.2).
= To develop loops following the loop design strategy (§85.2.1-5.2.3).

= To control a loop with the user’s confirmation (§5.2.4).
= To control a loop with a sentinel value (§5.2.5).

@ To obtain a large amount of input from a file by using input redirection
instead of typing from the keyboard (§5.2.6).

= To use for loops to implement counter-controlled loops (§5.3).
= To write nested loops (§5.4).
= To learn the techniques for minimizing numerical errors (§5.5).

= To learn loops from a variety of examples (GCD, FutureTuition,
MonteCarloSimulation, PrimeNumber) (§§5.6, 5.8).

= To implement program control with break and continue (§5.7).
= To use a loop to control and simulate a random walk (§5.9).

© Dr Jonathan Cazalas Module 5: Loops page 3

Motivation

B What if you wanted to print the same sentence
100 times. How would you do that?

Example:

= Print “Programming is fun!” 100 times

Would you really type the following 100 times???

print("Programming is fun!")
. 1 - - III'
MXtha;{: print("Programming 1is fun!'")

print("Programming is fun!')

© Dr Jonathan Cazalas Module 5: Loops page 4

Motivation

B Loops
Python provides a powerful programming construct
called a loop

Loops control how many times, in succession, an
operation is performed

Example loop:

count = 0

while count < 100:
print("Programming is fun!')
count = count + 1

s We'll explain this code shortly

= For now, just showing that we can, in fact, printing 100 lines
without having to type 100 individual statements!

© Dr Jonathan Cazalas Module 5: Loops page 5

Motivation

B Loops
Python provides two types of loop statements
while loops and for loops

while Loops:
= While loops are condition-controlled loops
= They are controlled by a true/false condition

= Executes a statement (or statements) repeatedly so long as the
given condition is true

for Loops:
= for loops are count controlled loops that repeat a specific number
of times

© Dr Jonathan Cazalas Module 5: Loops page 6

The while Loop

B Python while loop:
Syntax:

while loop-continuation-condition:

Statement (s)

Consider the flowchart on the right:

= A single execution of the loop body
is called an iteration

= Each loop contains a loop-continuation
condition
This controls if we execute the loop body
If True, the loop body is executed
If False, the entire loop terminates, and

loop-
continuation-
condition?

Statement(s)
(loop body)

false

!

program control goes to the statement that follows the loop

© Dr Jonathan Cazalas Module 5: Loops

page 7

The while Loop

B Using a while loop to print 100 times!

loop-continuation-condition
count = 0 /

while count < 100:

print("Programming is fun!") } loop body
count = count + 1

Note: count = 0

L
-

= The variable count is initially zero \

= The loop-continuation condition
checks if count is less than 100 count < 1007

m If True, it prints the message and
then increments count by 1

false

true

. " - . |
count = count + 1 — B Programing 1= funt®)]
= At some point, it will be False é
and the loop will exit
© Dr Jonathan Cazalas Module 5: Loops page 8

The while Loop

B Another example
Suppose we want to sum the first 10 integers
m 1+2+3+...+49+10
We can use a while loop for this!
Algorithm:

= We need to loop 10 times
So let’s keep a CONSTANT called NUM_TIMES
We also keep a variable called “sum” and initialize it to O

Let’s also use a “count” variable that starts at 1

And we will increment this variable EACH time we iterate through the loop
At each iteration, we take the “count” variable and add it to the
“sum” variable

© Dr Jonathan Cazalas Module 5: Loops page 9

The while Loop

B Another example

Suppose we want to sum the first 9 integers
m 1+2+3+...4+9

Go run this in
We can use a while loop for this! Thonny on the

. . Debugger!
Consider the following code:

while 1 <

sum = sum -+
i=1i +
print ("sum is", sum)
m 1 isinitializedto 1
but is then incremented to 2, 3, 4, and so on, up to 10

m Ifi < 10is True, the program adds i to sum

= When 1is10,1 < 10 becomes false, and the loop exits

© Dr Jonathan Cazalas Module 5: Loops

page 10

The while Loop

B Another example

What would be wrong with the following code?

Answer:

= The loop would never exit!

= In fact, this is called an infinite loop

= Since the increment statement is outside the loop, 1 never

increases beyond 1
Soi < 10 always evaluates to True

© Dr Jonathan Cazalas Module 5: Loops page 11

The while Loop

B Caution: off-by-one error

New programmers often execute a loop one time more
(or less) than was intended

Consider the following code:

count = 0

while count <= 100 :
print("Programming is fun!')
count = count + 1

s The message is displayed 101 times
Here count started at 0
And the condition was count <= 100

= How to correct:
Make count startat 1, or
Make the condition as count < 100

© Dr Jonathan Cazalas Module 5: Loops page 12

Program 1: Repeated Subtraction

B Remember our subtraction program. We asked
the user to answer a basic subtraction question.
Let’s rewrite that program by repeatedly asking

the same question if the user enters the incorrect
result.

B Remember:

Step 1: Problem-Solving Phase
Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 5: Loops page 13

Program 1: Repeated Subtraction

B Step 1: Problem-Solving Phase
Let’s start by looking at some output

Shell
>>>
Please answer the following:

9 - 5 =4

You got it!
>>>

Please answer the following:

6 — 4 =3

That is incorrect. Please try again:

You got it!
>>>

© Dr Jonathan Cazalas Module 5: Loops page 14

Program 1: Repeated Subtraction

B Step 1: Problem-Solving Phase
Like last time:

= We need to randomly generate two numbers

s We need to make sure the first number is *not* smaller than the
second number
If it is, swap them using simultaneous assignment

= Now, we ask the user to enter an answer
And we save the their input a variable called answer

= Next we have a while loop

= |n this loop, we will repeatedly tell them their answer is incorrect
and will re-ask them the same question

= What is the condition of this while loop?
= The loop executes as longas numl - num2 != answer

© Dr Jonathan Cazalas Module 5: Loops page 15

Program 1: Repeated Subtraction

B Step 2: Implementation Phase

import random

1. Generate two random single-digit integers
numberl = random.randint (0, 9)
number?2 = random.randint (0, 9)

2. If numberl < number?2, swap numberl with number?2
if numberl < number?2:
numberl, number? = number?2, numberl

3. Prompt the student to answer the subtraction question
print ("Please answer the following:\n")

print ("\t{} - {} = ".format (numberl, number2), end ')
answer = int (input())

4. Repeatedly ask the question until the answer 1is correct
while numberl - number2 != answer:
print ("\nThat is incorrect. Please try again:\n")
print ("\t{} - {} = ".format (numberl, number2), end
answer = int (input())

print ("\nYou got it!")

© Dr Jonathan Cazalas Module 5: Loops

Loop Design Strategies

B Some loops are straightforward
Others require some thought
B Consider the following loop-design strategy:
Identify the statements that need to be repeated.
Wrap these statements in a loop like this:

while True:

Statements

Code the loop-continuation-condition and add
appropriate statements for controlling the loop.

while loop-continuation-condition:

Statements
Additional statements for controlling the loop

© Dr Jonathan Cazalas Module 5: Loops page 17

Program 2:
Guessing Number Game

B You should write a program to play the famous
number guessing game from childhood.

“ have a number from 1 to 100. Guess that number in as
few guesses as possible.”

Your program should randomly generate a number and
then ask the user to repeatedly guess that number until
they finally get it correct.

B Remember:

Step 1: Problem-Solving Phase
Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 5: Loops page 18

Program 2:
Guessing Number Game

B Step 1: Problem-Solving Phase
Let’s start by looking at a run of the program...

Shell

>>>

EE e e e e e e

* Number Guessing Game *
E e o e e e i e

Guess a number between 1 and 100.

Enter your guess: 50

Your guess is too low

Enter your guess: 75

Your guess is too low

Enter your guess: 87

Your guess 1is too low

Enter your guess: 93

Your guess is too high

Enter your guess: 90

Your guess is too low

Enter your guess: 92

Yes, the number is 92

>>>

© Dr Jonathan Cazalas Module 5: Loops page 19

Program 2:
Guessing Number Game

B Step 2: Implementation Phase
Remember the design strategy:
Identify the statements that need to be repeated.

© Dr Jonathan Cazalas Module 5: Loops page 20

dhkhkAhkdkAhkdkAhrdkAhrd A rd A rh A dhhhK

* Number Gu ing ¢
EE S S S S R SRS LSS LSS * Kk kK

Program 2: T

Enter you

Guessing Number Game | -

Enter yo

B Step 2: Implementation Phase

import random

STEP 0: Statements OUTSIDE the Loop
number = random.randint(l, 100)
prlnt ("**")

print ("* Number Guessing Game M)

"**")

(
print (
print (" Guess a number between 1 and 100.")

REMEMBER STEP 1:
Identify the statements that must be repeated...

Prompt the user to guess the number
guess = eval (input (" Enter your guess: "))

Use i1if/elif/else statement to print appropriate message
if guess == number:

print (" Yes, the number is", number)
elif guess > number:

print (" Your guess is too high")

else:
print (" Your guess is too low")

© Dr Jonathan Cazalas Module 5: Loops

Program 2:
Guessing Number Game

B Step 2: Implementation Phase
Remember the design strategy:
Identify the statements that need to be repeated.
Wrap these statements in a loop like this:

while True:

Statements

© Dr Jonathan Cazalas Module 5: Loops page 22

Program 2:
Guessing Number Game

B Step 2: Implementation Phase

import random

STEP 0: Statements OUTSIDE the Loop
number = random.randint(l, 100)
prlnt "**")

print ("* Number Guessing Game M)
print "**")

print (" Guess a number between 1 and 100.")

REMEMBER STEP 2:
Wrap these statements in a while True loop
while True:

Prompt the user to guess the number

guess = eval (input (" Enter your guess: "))

Use i1if/elif/else statement to print appropriate message
if guess == number:
print (" Yes, the number is", number)
elif guess > number:
print (" Your guess is too high")
else:
print (" Your guess is too low")

© Dr Jonathan Cazalas Module 5: Loops

Program 2:
Guessing Number Game

B Step 2: Implementation Phase

Remember the design strategy:
|ldentify the statements that need to be repeated.

Wrap these statements in a loop like this:

while True:

Statements

Code the loop-continuation-condition and add
appropriate statements for controlling the loop.

while loop-continuation-condition:

Statements
Additional statements for controlling the loop

© Dr Jonathan Cazalas Module 5: Loops page 24

Program 2:
Guessing Number Game

B Step 2: Implementation Phase

© Dr Jonathan Cazalas

import random

Generate a random number to be guessed
number = random.randint(l, 100)
prlnt "**")

print ("* Number Guessing Game M)
print "**")

print (" Guess a number between 1 and 100.")

Note that we must initialize guess to -1 in order to enter loop
guess = -1
while guess != number:

Prompt the user to guess the number

guess = eval (input (" Enter your guess: "))

Use i1if/elif/else statement to print appropriate message
if guess == number:
print (" Yes, the number is", number)
elif guess > number:
print (" Your guess is too high")
else:
print (" Your guess is too low")

Module 5: Loops

Program 3:
Larger Subtraction Quiz

B Now that we know loops, we can make a better

subtraction quiz!
Let’s ask the user how many subtraction questions they
would like to answer.

We will then loop exactly that many times
At the end, we will tell them how many were correct
We will tell them how long they took to complete the quiz

B Remember:
Step 1: Problem-Solving Phase
Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 5: Loops page 26

Program 3:
Larger Subtraction Quiz

B Step 1: Problem-Solving Phase

Let’s think about what is involved here:

1. Asking how many questions should be on the quiz.

That’s easy. Just ask and save answer as num questions

2. For asingle iteration of the loop, what happens in the loop?
We must generate two random numbers
We must swap them if the first number is smaller than the second

We must ask the question, read user answer, print a correct/incorrect
message, and finally update num correct if necessary

3. How do we loop that many times?
Use a variable count and loop while count <= num questions
2. And how do we time the quiz? Use time.time ()

Use it once at beginning and once at the end...then subtract the difference!
The difference will be the number of seconds used during the quiz

© Dr Jonathan Cazalas Module 5: Loops page 27

Program 3:
Larger Subtraction Quiz

B Step 2: Implementation Phase

import random
import time

number = random.randint(l, 100)
prlnt ("**")

print ("* Subtraction Quiz M)
print ("**")
(
(

print (" How many questions would you like")
print (" to answer (5 to 20): ", end = "")

num questions = int (input())

num correct = 0
count =1
time start = time.time ()

© Dr Jonathan Cazalas Module 5: Loops page 28

Program 3:
Larger Subtraction Quiz

B Step 2: Implementation Phase

Notice the condition of the loop using <= because started count at 1
while count <= num gquestions:

Generate two random numbers

numl = random.randint (l, 9)

num?2 = random.randint (l, 9)

Swap the two numbers if numl is smaller than num2
if numl < num2:
numl, numZ2 = numZ, numl

Ask question and save answer
print ("\n Question {}:".format (count))
user answer = int (input (" {} = {} = ".format (numl, num2)))

Test correctness

if user answer == numl - num2:
print (" Correct!")
num correct += 1

else:
print (" Incorrect.™)

Important: Update count variable!!!
count += 1

© Dr Jonathan Cazalas Module 5: Loops

Program 3:
Larger Subtraction Quiz

B Step 2: Implementation Phase

time end = time.time ()
time used = time end - time start

You answered {} out of {} questions correct.".format (num correct,
num_questions))

Time: {:.1f} seconds".format (time used))

© Dr Jonathan Cazalas Module 5: Loops page 30

Program 3:

Larger Subtraction Quiz

bR R R R e e e e e

* Subtraction Quiz *
FhkEFEE A A F A A F A A A A A A I XA I I AT XTI X FA T H T HHEH

How many guestions would you like
to answer (5 to 20): 5

Question 1:
6 -1 =25
Correct!

Question 2:
6 - 6 =20
Correct!

Question 3:
9 - 3 = 4824
Incorrect.

Question 4:
g -1=7
Correct!

Question 5:
5 -2 =3
Correct!

Quiz Results:

B Sample runs of program:

You answered 4 out of 5 gquestions correct.
Time: 13.4 seconds

bR R e e e e

* Subtraction Quiz *
bR R e e e e
How many questions would you like
to answer (5 to 20): 5

Question 1:
9 - 5 =4
Correct!

Question 2:
6 - 6 =0
Correct!

Question 3:
7 -5 =2
Correct!

Question 4:
9 -6 =3
Correct!

Question 5:
g -1=7
Correct!

Quiz Results:
You answered 5 out of 5 gquestions correct.
Time: 5.4 seconds

© Dr Jonathan Cazalas

Module 5: Loops

page 31

Controlling while Loops

B We've seen a couple ways to control a while loop

Using a count variable and counting some number of
iterations
Checking for some condition

= Such as the number guessing game

while guess != number

B There are other ways to control the loop as well
We can control the loop with a user confirmation

And we can control the loop with a sentinel value

© Dr Jonathan Cazalas Module 5: Loops page 32

Controlling while Loops

B Controlling a Loop with User Confirmation

The last program (Subtraction Quiz) controlled the loop
with a count

= And we iterated between 5 or 20 times depending on the user
input

We let the user control the number of iterations
How?

= We could ask them if they want to answer another question
= We save their answer (“Y” or “N”)

We then use the answer as a condition of the loop

while another question == %“Y”:

© Dr Jonathan Cazalas Module 5: Loops page 33

Controlling while Loops

B Controlling a Loop with User Confirmation

Make a new Subtraction Quiz program
= Copy/paste your last code

Edit it to make the loop user controlled
Here’s the idea:

another question = "Y"

while another question.lower() == "y":

print ("\n Would you like to answer another")
print (" question (Y or N)? ", end = "")
another question = input()

count += 1 # used to print Question number

© Dr Jonathan Cazalas Module 5: Loops page 34

Controlling while Loops

B Controlling a Loop a Sentinel Value

Another technique is to designate a special input value to
stop the loop
= This value is called the sentinel value

= And a loop that uses a sentinel value is called a sentinel-
controlled loop

Consider the following example...

© Dr Jonathan Cazalas Module 5: Loops page 35

Program 4:
Summing until Sentinel Value

B Write a program that repeatedly asks the user to
enter integer values.

Your program should sum up all these values, saving the
result in a variable called sum.

Your program should count how many values were
entered, saving the total in a variable called count.

Your program should stop reading values once the integer
O is entered.

B Remember:
Step 1: Problem-Solving Phase
Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 5: Loops page 36

Program 4:
Summing until Sentinel Value

B Step 1: Problem-Solving Phase

Use the design strategy!

So first think about what should be repeated inside the
loop...

= You should ask the user to enter a value

= We need to add that to the running sum

= And we need to increase count by 1

Now, wrap those statements in a While True block
Finally, add on the condition of the while loop

© Dr Jonathan Cazalas Module 5: Loops page 37

Program 4:
Summing until Sentinel Value

B Step 2: Implementation Phase

data = int(input ("Enter an integer (input ends 1if it is a 0): "))

while data != 0:
sum += data
count += 1
data = int (input ("Enter an integer (input ends if it is a 0): "))

print ("\nYou entered {} values for a total sum of {}.".format (count, sum))

Note: we end up having to repeat a line of code
s We prompt and scan the data value inside the loop
= And we also prompt and scan the data once before the loop

© Dr Jonathan Cazalas Module 5: Loops page 38

Controlling while Loops

B Limitations of Python while loop structure

Often you will absolutely want to run your loop at least
one time

Meaning, regardless of the condition, you want to at
execute all the statements inside the loop at least once

= And this is what we needed in the last example
= We wanted to read a user integer at least one time

Most languages have a do/while loop
= In short, this loop structure “does” (the do part) the loop one
time
= Then, the continue condition is checked at the end of the loop
= This would have been a better solution to the last problem

© Dr Jonathan Cazalas Module 5: Loops page 39

Controlling while Loops

B Limitations of Python while loop structure
Python does not have a do/while loop structure

So what is a workaround?

If we have a problem where we absolutely want to “do”
the loop one time, regardless of condition, how can we
do this in Python?
Simple!

= And in fact, the solution is common in programming

= We justuseawhile True: loop

Meaning...the condition is always true!

= Then, inside the loop, we have a an i f statement
= If the specified condition is met, we use break to exit the loop

© Dr Jonathan Cazalas Module 5: Loops page 40

Program 4:
Summing until Sentinel Value

B Step 2: Implementation Phase
Let’s modify the last program with this new idea...

sum = 0
count = 0
while True:

data = int(input ("Enter an integer (input ends if it is a 0): "))

if data == 0:
break

sum += data
count += 1

print ("\nYou entered {} values for a total sum of {}.".format (count, sum))

= Notice that the logical order of the instructions inside the loop
had to change

© Dr Jonathan Cazalas Module 5: Loops page 41

BCheck Yourself

Controlling while Loops

How many times are the following loop bodies repeated?

What is the printout of each loop?

i=1
while 1 < 10:
if i % 2 == 0:
print(i)

i=1
while i < 10:
if i % 2 == 0:
print(i)
i+=1

i=1
while i < 10:
if i % 2 == 0:
print(i)
i +=1

(a)

(b)

= (a) is infinite and prints nothing

= (b) is infinite and prints nothing

(c)

= (c) loops 9 times and prints 2 4 6 8 (each on a different line)

© Dr Jonathan Cazalas

Module 5: Loops

page 42

Controlling while Loops

BCheck Yourself

Suppose theinputis2 3 4 5 0 (one number per line).
What is the output of the following code?

number = eval(input("Enter an integer: "))
max = number

while number != 0:
number = eval(input("Enter an integer: "))
1f number > max:
max = number

print("max is", max)
print("number”, number)

© Dr Jonathan Cazalas Module 5: Loops page 43

The for Loop

B Often you will use a loop to iterate a specific
number of times
And we use a counter to count the number of iterations
This is called a counter-controlled loop
Example:

i = initial_value

while i < end value:

© Dr Jonathan Cazalas Module 5: Loops page 44

The for Loop

B We can use a for loop to simplify the last example:

for i in range(initialValue, endValue) :

The general syntax is:
for var 1n sequence:

Loop body

\ 144

usually, we do something with “wvar

s Here, var stands for variable
You can name it what you want...you are the programmer!

m A sequence holds multiple items of data, stored one after
another
» We'll study different types of sequences later in the semester

© Dr Jonathan Cazalas Module 5: Loops page 45

The for Loop

B We can use a for loop to simplify the last example:
Example for loop:

for i in range (4, 8):

print (i)

= Note what gets printed to the output:

Shell

>>>

4
5|
6
y

>>>

= Sowe loopfrominitial valuetoend value - 1

© Dr Jonathan Cazalas Module 5: Loops page 46

The for Loop

B We can use a for loop to simplify the last example:
Another example:

for in range (5) :

print ()

= Output:
Shell

>>>

= = O

>>>

= This would have been the same as: for i in range (0, 5):

© Dr Jonathan Cazalas Module 5: Loops page 47

The for Loop

B We can use a for loop to simplify the last example:
Number of arguments of range () method:

= One argument:

If there is only one argument, such as range(5), this assumes an initial_value
of 0

= Two arguments:

If there are two arguments, such as range(5, 10), this is gives the initial_value
(5) and the end_value (10)

= Although, remember, the loop does *not* execute on 10

= Three arguments:
If there are three arguments, the first two are initial_value and end_value
The third argument is the step size

Normally, step size is assumed to be +1
= Meaning, just add one to the counter at each iteration

But we can use a different step size, and even a negative step size

© Dr Jonathan Cazalas Module 5: Loops page 48

The for Loop

B We can use a for loop to simplify the last example:
Another example (step size 2):

for in range (1,

print ()

= Output:
Shell

>>>

LU I O I UV

>>>

= So the step size is 2 and we stop before 10

© Dr Jonathan Cazalas Module 5: Loops page 49

The for Loop

B We can use a for loop to simplify the last example:
Another example (step size 5):

for in range (0,

print ()

= Output:

>>>

0
5
10
15
20
25

>>>

= So the step size is 5 and we stop before 30

© Dr Jonathan Cazalas Module 5: Loops page 50

The for Loop

B We can use a for loop to simplify the last example:
Another example (counting backwards):

for in range (5, 0, -1):

print (x)

= Output:
Shell

>>>

[A B S Rt S

>>>

= So the step size is -1 and we stop before 0

© Dr Jonathan Cazalas Module 5: Loops page 51

The for Loop

BCheck Yourself

Suppose theinputis2 3 4 5 0 (one number per line).
What is the output of the following code?

humber = 0
sum = 0

for count in range(5):
number = eval (input("Enter an integer: "))
sum += number

print("sum 1s', sum)
print("count 1is", count)

© Dr Jonathan Cazalas Module 5: Loops page 52

The for Loop

BCheck Yourself

Convert the following for loop into a while loop:

sum = 0
for 1 in range (1001):
sum = sum + 1

sum = 0

while 1 < 1001:
sum = sum + 1i
i +=1

© Dr Jonathan Cazalas Module 5: Loops page 53

The for Loop

BCheck Yourself

Count the number of iterations of each of the following
for loops (assume n = 10)

count = 0 for count 1in range(n):
while count < n: print(count)
count += 1

lterations: 10 (@ # Iterations: 10 (b)

count = 5 count = 5

while count < n: while count < n:
count += 1 count = count + 3

lterations: 5 (© # lterations: 2 (@

© Dr Jonathan Cazalas Module 5: Loops page 54

The for Loop

B Which loop should you use?

Each has a purpose!
When should £or loops be used?

= when you know how many iterations you need
= or when you know the range of values to loop over
When should while loops be used?

= When you should loop, indefinitely, as long as a given condition is
true

© Dr Jonathan Cazalas Module 5: Loops page 55

Nested Loops

B Loops can be nested inside other loops!
The first loop is considered the outer loop

Then, inside this outer loop can be one or more inner
loops

Each time the outer loop is repeated, the inner loops are
again restarted and begin anew

© Dr Jonathan Cazalas Module 5: Loops page 56

Nested Loops

B Loops can be nested inside other loops!
Example:

for 1 in range(l, 4):

for j in range(1l, 4):
print("1i: {} J: {}".format (i, 7J))

J: 1
Jj 2
J: 3
Jj 1
J: 2
Jj 3
J: 1
Jj 2
J: 3

Output:

Shell

o
LW
W

O e S S
W Wl NN e

© Dr Jonathan Cazalas Module 5: Loops page 57

Program 5: Multiplication Table

B Write a program that will display the following
multiplication table:

Multiplication Table
3 - 5 6 7 8 9

=
]

2 3 < 5 6 7 8 9
4 6 8 10 12 14 16 18
6 9 12 15 18 21 24 27
8 12 16 20 24 28 32 36
15 20 25 30 35 40 45
12 18 24 30 36 42 48 54
14 21 28 35 42 49 56 63
16 24 32 40 48 56 64 72
18 27 36 45 54 63 72 81

WO~ v B
O oo~ VTP Wi PR
|_l
o

B Remember:
Step 1: Problem-Solving Phase
Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 5: Loops page 58

Program 5: Multiplication Table

B Step 1: Problem-Solving Phase
How many loops do we need?
Answer:

= 2 loops!
= The outer loop will iterate 9 times

One for each row

= Suggestion: use the word row as your variable name!

Code this first, so you can feel good about what is being printed

= Then, for EACH iteration of the outer loop, we also have an inner
loop
And the inner loop will also iterate 9 times
This inner loop prints the row values

Example:
= |f row = 3, then we print 3*1, 3*2, 3*3, 3*4, 3*5, etc.

© Dr Jonathan Cazalas Module 5: Loops page 59

Program 5: Multiplication Table

B Step 2: Implementation Phase

Print
print (" Multiplication Table")
print (" ", end = "")
for 1 in range(l, 11):

print ("{:>4d}".format (i), end = "")
print ("\n , end = "")
for 1 in range(l, 11):

print ("{:4s}".format ("----"), end = "")
print ()

Print BODY - use two
for row in range(l, 11):
Print Row information
print ("{:2d} | ".format (row), end = "")
for col in range(l, 11):
print ("{:>4d}".format (row * col), end = "")

Now, print a newline after each row

print ()

© Dr Jonathan Cazalas Module 5: Loops page 60

Nested Loops

B Careful!
Nested loops can be surprisingly short in # of lines of code

= but they can take a long time to run!

Consider the following example:

for i in range (1000) :
for 7 in range(1000) :

for k in range (1000) :
print ("{:>7d}{:>7d}{:>7d}".format (i, j, k))

= That’s three nested loops!
And each loop, on its own, runs 1000 times...but they are nested...

= That innermost print statement will get executed 1,000,000,000
times!!!

© Dr Jonathan Cazalas Module 5: Loops page 61

Nested Loops

.ChECk YOU rSEIf Program Trace

Trace the following program

1 0

= Draw a table and show the values of 5 0

i and j at each iteration of the loops " N

for i 1in range(l, 5): 3 0
j=0

while j < 1: ° !

print(j, end = " ") 3 2

j +=1 4 0

4 1

= Output: 4 2

4 3

0 0 1 0 1 2 0 1 2 3

© Dr Jonathan Cazalas Module 5: Loops page 62

Nested Loops

.ChECk YOU rSEIf Program Trace

Trace the following program

0 0

= Draw a table and show the values of N N

i and j at each iteration of the loops 5 5

i=0 3 3

while i < 5: 3 %

for j in range(i, 1, -1): 4 4

print(j, end = " ")
pr--in-t(”:‘:‘.'::'::':”) 4 3
* kK K i 4= 1 : 5
* Kk k% k

2 * k k% %

3 2 * Kk k%

4 32 * Kk kX

© Dr Jonathan Cazalas Module 5: Loops page 63

Warmup/Stretching

B Go to my repl.it

B Click on the 2280 NestedlLoops Warmup
B Fork that code

B Stretching Exercise #1:

Werite a loop to perform the following:

Enter an integer: 4

Here are 4 lines, each with an asterisk:
*

*
*
*

© Dr Jonathan Cazalas Module 5: Loops page 64

Warmup/Stretching

B Stretching Exercise #2:
Werite a loop to perform the following:

Enter an integer: 4

Here are 4 lines, each with an asterisk:
*

*
*
*

And now we print a triangle of asterisks:
*

* %
* Kk %

* Kk Kk %

© Dr Jonathan Cazalas Module 5: Loops page 65

Program 6: GCD

B Write a program to ask the user to enter two
positive integers. You should then find the greatest
common divisor (GCD) and print the result to the
user.

B Remember:

Step 1: Problem-solving Phase

Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 5: Loops page 66

Program 6: GCD

B Step 1: Problem-solving Phase ~

First question: .
“What’s a GCD???”

Answer:

m Greatest Common Divisor

aka Greatest Common Factor (GCF)

For Clarity:

= Given two integers, the GCD is the largest integer that perfectly
divides into (or factors from) both of the given integers

© Dr Jonathan Cazalas Module 5: Loops page 67

Program 6: GCD

B Step 1: Problem-solving Phase
GCD

= Find the largest integer that divides both numbers
= GCD(4,2)=2
= GCD(16,24) =8
= GCD(25,60)=5
Cool, so are we ready to code?
= NO!
Always, first think about the problem

And understand the solution 200% before coding!
So how do you calculate the GCD? Discuss this in groups.

© Dr Jonathan Cazalas Module 5: Loops page 68

Program 6: GCD

B Step 1: Problem-solving Phase
GCD(n1, n2)

m You know that the number 1 is a common divisor
because 1 divides into everything ?

= Butis 1 the greatest common divisor ¢

= So you can check the next values, one by one
Check 2, 3,4, 5, 6, ...
Check if that number “cleanly divides” both integers
= How? Mod! If the mod (%) is zero, this means no remainder.

Keep checking all the way up to the smaller of nl or n2

= Whenever you find a new common divisor, this becomes the new
gcd

m After you check all the possibilities, the value in the variable gcd
is the GCD of n1 and n2

© Dr Jonathan Cazalas Module 5: Loops page 69

Program 6: GCD

H Step 2: Implementation Phase

LISTING 5.8 GreatestCommonDivisor.py

1 # Prompt the user to enter two integers

2 nl = eval(input("Enter first integer: ")) . .
3 n2 = eval(input("Enter second integer: ")) TTyre_COd”KJﬂ“S
4 as a for loop!

5 gcd =1

6 k =2

7 while k <= n1 and k <= n2:

8 if nl % k ==0and n2 % k == 0:

9 gcd = k
10 k += 1
11
12 print("The greatest common divisor for",
13 nl, "and", n2, "is", gcd)

Enter first integer: 125 |dEnter

Enter second integer: 2525 [emer
The greatest common divisor for 125 and 2525 is 25

© Dr Jonathan Cazalas Module 5: Loops page 70

Nested Loops

.ChECk YOU rSEIf Program Trace

Trace the following program

I
I

5 1
5 2
= Draw a table and show the values of : .
i and j at each iteration of the loops - p
i=2>5 5 5
while i >= 1: 4 1
num = 1
for j in range(l, i + 1): 4 2
print(num, end = "xxx") 4 3
num *= 2 4 4
print()
i-=1 3 1
3 2
1xxx2xXX4xxX8XXX]1 O6XXX 3 3
IxxXX2XXXAXXKXE8XXX 2 1
1xxx2xxx4xxxX 2 2
1xXXX2XXX 1 1
1xxx

© Dr Jonathan Cazalas Module 5: Loops page 71

Nested Loops

.ChECk YOU rSEIf Program Trace

,

Trace the following program 1 1

2 1

= Draw a table and show the values of , ,

i and j at each iteration of the loops 3 1

i=1 3 2

while i <= 5: 3 °

hum = 1 4 1

for j in range(l, i + 1): 4 2

print(num, end = "G") 4 3

num += 2 4 4

print() 5 1

1G 1 +=1 5 2

1G3G E 3

1G3G5G 5 4

1G3G5G7G S5 S
1G3G5G7GO9G

© Dr Jonathan Cazalas Module 5: Loops page 72

Minimizing Numerical Errors

B Summary:
Use of floating-point numbers can cause numerical errors
Run the following code to see:

[T N |
'_\

X
X
X
X
X
X

X B = B2 22O

ie
H
'_"
3
(_'.

= We would expect to see 0.5 printed
= Instead, we get 0.5000000000002
= The answer is not perfectly accurate...it’s a little bit off

= This is due to the limitation of the hardware, something you’ll
learn more about in Computer Organization & Architecture

© Dr Jonathan Cazalas Module 5: Loops page 73

Minimizing Numerical Errors

B Never use floating-point values as loop conditions
For example, consider the following code:

i =0.01

while 1 <= 1.0:
sum += 1
1L =1 + 0.01

print ("The sum 1is", sum)

= If you work this by hand, the expected final value for sum is 50.5
But what actually gets printed is 49.5

Why? Because the value of i does not have accurate floating-point values

And at the final iteration, i is slightly larger than 1 (although it should equal 1)
Module 5: Loops

© Dr Jonathan Cazalas page 74

Minimizing Numerical Errors

B Never use floating-point values as loop conditions

If you need to sum up values similar to the last example,
use a while loop or a for loop as follows:

sum = 0 sum = 0

count = 0

i =0.01 i =20.01

while count < 100: for count in range (100):
sum += i sum += 1
1 =1 + 0.01 1 =1 + 0.01
count += 1 # Increase count

print ("The sum is", sum)

print ("The sum is", sum)

= In both cases, we simply used an integer count to serve as a
counter variable, counting the 100 iterations of the loops

© Dr Jonathan Cazalas Module 5: Loops page 75

Program 7: Future Tuition

B A university charges $10,000 per year for study
(tuition). The cost of tuition increases 7% every year.
Write a program to determine how many years until
the tuition will increase to $20,000.

B Remember:

Step 1: Problem-solving Phase

Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 5: Loops page 76

Program 7: Future Tuition

B Step 1: Problem-solving Phase
THINK:

= How do we solve this on paper?
Cost of Year0: $10,000
Cost of Yearl: Year0*1.07
Cost of Year2: Yearl*1.07
Cost of Year3: Year2*1.07

= So keep computing the tuition until it is at least $20,000

= Once you get to $20,000, print the number of years taken

© Dr Jonathan Cazalas Module 5: Loops page 77

Program 7: Future Tuition

B Step 1: Problem-solving Phase
THINK:

s Now a closer look at some of the code:
tuition = 10000

year = 0
tuition = tuition*1.07
year += 1
tuition tuition*1.07

year += 1
tuition = tuition*1.07

year += 1

= So we would keep doing this until tuition is greater than or
equal to $20,000

= Then, at that point, we print the value in variable year

»_How to do this? Use a while loop!

© Dr Jonathan Cazalas Module 5: Loops page 78

Program 7: Future Tuition

H Step 2: Implementation Phase

LISTING 5.9 FutureTuition.py

1 year = 0 # Year O

2 tuition = 10000 # Year 1

3

4 while tuition < 20000:

5 year += 1

6 tuition = tuition * 1.07

7

8 print("Tuition will be doubled in", year, "years')
9 print("Tuition will be $" + format(tuition, ".2f"),
10 "in", year, "years')

Tuition will be doubled in 11 years
Tuition will be $21048.52 in 11 years

© Dr Jonathan Cazalas Module 5: Loops page 79

break and continue

B Extra control within loops:

Python uses two additional keywords that provide more
control within loops: break and continue

break:

= We've previously jumped ahead and already saw this
= What does break do?

You can use the break statement, inside a loop, to immediately
terminate/stop the loop

Example: maybe the loop is running indefinitely

But you want to stop the loop once some condition is True
So you test for this condition, and, if True, you use break

= This willimmediately terminate/stop that specific loop

© Dr Jonathan Cazalas Module 5: Loops page 80

B Extra control within loops:

break:

= Example:
LISTING 5.11 TestBreak. py

sum = 0
number = 0

while number < 20:
number += 1
sum += number
if sum >= 100:

c;:_““- break

print("The number 1is", number)
print("The sum 1is", sum)

= O Wo~NOoOu B WM

[

break and continue

* The program simply adds the
integers 1 through 20 to the
variable sum.

e But once sum is greater or
equal to 100, the loop stops
by using the keyword break.

The number 1is 14
The sum is 105

© Dr Jonathan Cazalas Module 5: Loops

page 81

break and continue

B Extra control within loops:

Python uses two additional keywords that provide more
control within loops: break and continue

continue:
= What does continue do?

You can use the continue statement, inside a loop, to immediately
terminate/stop the current iteration of the loop

For clarity:
= continue does NOT terminate the entire loop

= continue only stops the current iteration of the loop
= So while break breaks out of the entire loop
®= You can consider continue as breaking out of the current iteration

What really happens?

= The program jumps to “after” the last line of the loop
= Which really means it goes back to the beginning of the loop

© Dr Jonathan Cazalas Module 5: Loops page 82

break and continue

B Extra control within loops:

continue:
= Example:

LISTING 5.12 TestContinue.py * The program adds

1 sum = O integers 1 through 20 to
2> number = 0 the variable sum

3 * But, the program SKIPS
4 while number < 20: the integers 10 and 11
> number += 1 * So when number is 10 or
6 if number == 10 or number == 11: number is 11, the

7 continue . . .

3 (sum += number iteration terminates and
9 those values are not

10 print("The sum 1is", sum) added to the sum.

The sum is 189

© Dr Jonathan Cazalas Module 5: Loops page 83

break and continue

B Extra control within loops:
So when do we use break and continue?
Well, you are the programmer! So you choose!
But when is it a good idea?

= Whenever it simplifies the logic and the code

We’'ll show two more examples of the same problem
= One coded withabreak
= And the other without a break

And on this problem, the break most certainly simplifies
the logic and the code

© Dr Jonathan Cazalas Module 5: Loops page 84

break and continue

B Extra control within loops:

Example:

= Given an integer as input, write a program to find the smallest
factor of that integer other than 1.

= You could write this as follows:

n = eval (input ("Enter an integer >= 2: "))
factor = 2
while True:

[¢)

if n % factor == O0:
break

factor += 1
print ("The smallest factor other than 1 for", n,

is", factor)

© Dr Jonathan Cazalas Module 5: Loops page 85

break and continue

B Extra control within loops:

Example:

= Given an integer as input, write a program to find the smallest
factor of that integer other than 1.

= Or you can write it without a break statement:

n = eval (input ("Enter an integer >= 2: "))
found = False

factor = 2

while factor <= n and not found:

0]

if n % factor ==
found = True
else:
factor += 1
print ("The smallest factor other than 1 for", n, "is", factor)

So this works
But the code with break works cleaner and makes more sense

© Dr Jonathan Cazalas Module 5: Loops page 86

Program 8: First 50 Primes

B Write a program to find (and print out) the first 50
prime numbers, printing exactly ten prime numbers
per line.

The first 50 prime numbers are

2 3 5 /7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 /79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

B Remember:
Step 1: Problem-solving Phase
Step 2: Implementation Phase

© Dr Jonathan Cazalas Module 5: Loops page 87

Program 8: First 50 Primes

B Step 1: Problem-solving Phase

Break this into two parts

Start by solving the problem of testing if a given number is
a prime number
= We've done that before and you likely have the code

Then, once that is done, wrap that in a Loop

Problem says to find the first 50 primes

How many numbers will we need to test to find the first 50 prime
numbers?

= Who knows!
= Thus, we need an open-ended while loop!

© Dr Jonathan Cazalas Module 5: Loops page 88

PYTHON BOOT CAMP

Module 5:

Loops

A

