
Module 5:
Loops

Python Boot Camp

Module 5: Loops page 2© Dr Jonathan Cazalas

CS Jokes

Module 5: Loops page 3© Dr Jonathan Cazalas

Objectives

 To write programs for executing statements repeatedly by using a while loop
(§5.2).

 To develop loops following the loop design strategy (§§5.2.1-5.2.3).

 To control a loop with the user’s confirmation (§5.2.4).

 To control a loop with a sentinel value (§5.2.5).

 To obtain a large amount of input from a file by using input redirection
instead of typing from the keyboard (§5.2.6).

 To use for loops to implement counter-controlled loops (§5.3).

 To write nested loops (§5.4).

 To learn the techniques for minimizing numerical errors (§5.5).

 To learn loops from a variety of examples (GCD, FutureTuition,
MonteCarloSimulation, PrimeNumber) (§§5.6, 5.8).

 To implement program control with break and continue (§5.7).

 To use a loop to control and simulate a random walk (§5.9).

Module 5: Loops page 4© Dr Jonathan Cazalas

Motivation

 What if you wanted to print the same sentence
100 times. How would you do that?

 Example:
 Print “Programming is fun!” 100 times

 Would you really type the following 100 times???

Module 5: Loops page 5© Dr Jonathan Cazalas

Motivation

 Loops

 Python provides a powerful programming construct
called a loop

 Loops control how many times, in succession, an
operation is performed

 Example loop:

 We’ll explain this code shortly

 For now, just showing that we can, in fact, printing 100 lines
without having to type 100 individual statements!

Module 5: Loops page 6© Dr Jonathan Cazalas

Motivation

 Loops

 Python provides two types of loop statements

 while loops and for loops

 while Loops:

 while loops are condition-controlled loops

 They are controlled by a true/false condition

 Executes a statement (or statements) repeatedly so long as the
given condition is true

 for Loops:

 for loops are count controlled loops that repeat a specific number
of times

Module 5: Loops page 7© Dr Jonathan Cazalas

The while Loop

 Python while loop:

 Syntax:
while loop-continuation-condition:

Loop body

Statement(s)

 Consider the flowchart on the right:
 A single execution of the loop body

is called an iteration

 Each loop contains a loop-continuation
condition
 This controls if we execute the loop body

 If True, the loop body is executed

 If False, the entire loop terminates, and
program control goes to the statement that follows the loop

Module 5: Loops page 8© Dr Jonathan Cazalas

The while Loop

 Using a while loop to print 100 times!

 Note:
 The variable count is initially zero

 The loop-continuation condition
checks if count is less than 100

 If True, it prints the message and
then increments count by 1
count = count + 1

 At some point, it will be False
and the loop will exit

Module 5: Loops page 9© Dr Jonathan Cazalas

The while Loop

 Another example

 Suppose we want to sum the first 10 integers
 1 + 2 + 3 + … + 9 + 10

 We can use a while loop for this!

 Algorithm:
 We need to loop 10 times

 So let’s keep a CONSTANT called NUM_TIMES

 We also keep a variable called “sum” and initialize it to 0

 Let’s also use a “count” variable that starts at 1
 And we will increment this variable EACH time we iterate through the loop

 At each iteration, we take the “count” variable and add it to the
“sum” variable

Module 5: Loops page 10© Dr Jonathan Cazalas

The while Loop

 Another example

 Suppose we want to sum the first 9 integers
 1 + 2 + 3 + … + 9

 We can use a while loop for this!

 Consider the following code:

 i is initialized to 1
 but is then incremented to 2, 3, 4, and so on, up to 10

 If i < 10 is True, the program adds i to sum

 When i is 10, i < 10 becomes false, and the loop exits

sum = 0

i = 1

while i < 10:

sum = sum + i

i = i + 1

print("sum is", sum) # sum is 45

Go run this in
Thonny on the
Debugger!

Module 5: Loops page 11© Dr Jonathan Cazalas

The while Loop

 Another example

 What would be wrong with the following code?

 Answer:
 The loop would never exit!

 In fact, this is called an infinite loop

 Since the increment statement is outside the loop, i never
increases beyond 1
 So i < 10 always evaluates to True

sum = 0

i = 1

while i < 10:

sum = sum + i

i = i + 1

Module 5: Loops page 12© Dr Jonathan Cazalas

The while Loop

 Caution: off-by-one error

 New programmers often execute a loop one time more
(or less) than was intended

 Consider the following code:

 The message is displayed 101 times
 Here count started at 0

 And the condition was count <= 100

 How to correct:
 Make count start at 1, or

 Make the condition as count < 100

Module 5: Loops page 13© Dr Jonathan Cazalas

Program 1: Repeated Subtraction

 Remember our subtraction program. We asked
the user to answer a basic subtraction question.
Let’s rewrite that program by repeatedly asking
the same question if the user enters the incorrect
result.

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 14© Dr Jonathan Cazalas

Program 1: Repeated Subtraction

 Step 1: Problem-Solving Phase

 Let’s start by looking at some output

Module 5: Loops page 15© Dr Jonathan Cazalas

Program 1: Repeated Subtraction

 Step 1: Problem-Solving Phase

 Like last time:
 We need to randomly generate two numbers

 We need to make sure the first number is *not* smaller than the
second number
 If it is, swap them using simultaneous assignment

 Now, we ask the user to enter an answer
 And we save the their input a variable called answer

 Next we have a while loop

 In this loop, we will repeatedly tell them their answer is incorrect
and will re-ask them the same question

 What is the condition of this while loop?

 The loop executes as long as num1 – num2 != answer

Module 5: Loops page 16© Dr Jonathan Cazalas

Program 1: Repeated Subtraction

 Step 2: Implementation Phase
import random

1. Generate two random single-digit integers

number1 = random.randint(0, 9)

number2 = random.randint(0, 9)

2. If number1 < number2, swap number1 with number2

if number1 < number2:

number1, number2 = number2, number1

3. Prompt the student to answer the subtraction question

print("Please answer the following:\n")

print("\t{} - {} = ".format(number1, number2), end = '')

answer = int(input())

4. Repeatedly ask the question until the answer is correct

while number1 - number2 != answer:

print("\nThat is incorrect. Please try again:\n")

print("\t{} - {} = ".format(number1, number2), end = '')

answer = int(input())

print("\nYou got it!")

Module 5: Loops page 17© Dr Jonathan Cazalas

Loop Design Strategies

 Some loops are straightforward

 Others require some thought

 Consider the following loop-design strategy:

1. Identify the statements that need to be repeated.

2. Wrap these statements in a loop like this:
while True:

Statements

3. Code the loop-continuation-condition and add
appropriate statements for controlling the loop.
while loop-continuation-condition:

Statements

Additional statements for controlling the loop

Module 5: Loops page 18© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 You should write a program to play the famous
number guessing game from childhood.

 “I have a number from 1 to 100. Guess that number in as
few guesses as possible.”

 Your program should randomly generate a number and
then ask the user to repeatedly guess that number until
they finally get it correct.

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 19© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 1: Problem-Solving Phase

 Let’s start by looking at a run of the program…

Module 5: Loops page 20© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase

 Remember the design strategy:

1. Identify the statements that need to be repeated.

Module 5: Loops page 21© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase
import random

STEP 0: Statements OUTSIDE the Loop

number = random.randint(1, 100)

print("**")

print("* Number Guessing Game *")

print("**")

print(" Guess a number between 1 and 100.")

REMEMBER STEP 1:

Identify the statements that must be repeated...

Prompt the user to guess the number

guess = eval(input(" Enter your guess: "))

Use if/elif/else statement to print appropriate message

if guess == number:

print(" Yes, the number is", number)

elif guess > number:

print(" Your guess is too high")

else:

print(" Your guess is too low")

Module 5: Loops page 22© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase

 Remember the design strategy:

1. Identify the statements that need to be repeated.

2. Wrap these statements in a loop like this:
while True:

Statements

Module 5: Loops page 23© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase
import random

STEP 0: Statements OUTSIDE the Loop

number = random.randint(1, 100)

print("**")

print("* Number Guessing Game *")

print("**")

print(" Guess a number between 1 and 100.")

REMEMBER STEP 2:

Wrap these statements in a while True loop

while True:

Prompt the user to guess the number

guess = eval(input(" Enter your guess: "))

Use if/elif/else statement to print appropriate message

if guess == number:

print(" Yes, the number is", number)

elif guess > number:

print(" Your guess is too high")

else:

print(" Your guess is too low")

Module 5: Loops page 24© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase

 Remember the design strategy:

1. Identify the statements that need to be repeated.

2. Wrap these statements in a loop like this:
while True:

Statements

3. Code the loop-continuation-condition and add
appropriate statements for controlling the loop.
while loop-continuation-condition:

Statements

Additional statements for controlling the loop

Module 5: Loops page 25© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase
import random

Generate a random number to be guessed

number = random.randint(1, 100)

print("**")

print("* Number Guessing Game *")

print("**")

print(" Guess a number between 1 and 100.")

Note that we must initialize guess to -1 in order to enter loop

guess = -1

while guess != number:

Prompt the user to guess the number

guess = eval(input(" Enter your guess: "))

Use if/elif/else statement to print appropriate message

if guess == number:

print(" Yes, the number is", number)

elif guess > number:

print(" Your guess is too high")

else:

print(" Your guess is too low")

Module 5: Loops page 26© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Now that we know loops, we can make a better
subtraction quiz!

 Let’s ask the user how many subtraction questions they
would like to answer.

 We will then loop exactly that many times

 At the end, we will tell them how many were correct

 We will tell them how long they took to complete the quiz

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 27© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Step 1: Problem-Solving Phase

 Let’s think about what is involved here:
1. Asking how many questions should be on the quiz.

 That’s easy. Just ask and save answer as num_questions

2. For a single iteration of the loop, what happens in the loop?
 We must generate two random numbers

 We must swap them if the first number is smaller than the second

 We must ask the question, read user answer, print a correct/incorrect
message, and finally update num_correct if necessary

3. How do we loop that many times?
 Use a variable count and loop while count <= num_questions

4. And how do we time the quiz? Use time.time()
 Use it once at beginning and once at the end…then subtract the difference!

 The difference will be the number of seconds used during the quiz

Module 5: Loops page 28© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Step 2: Implementation Phase
import random

import time

Generate a random number to be guessed

number = random.randint(1, 100)

print("**")

print("* Subtraction Quiz *")

print("**")

print(" How many questions would you like")

print(" to answer (5 to 20): ", end = "")

num_questions = int(input())

Setup variables

num_correct = 0 # keeps track of the number of correct answers

count = 1 # variable used to count number of questions

time_start = time.time() # get starting time in seconds

Module 5: Loops page 29© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Step 2: Implementation Phase
Notice the condition of the loop using <= because started count at 1

while count <= num_questions:

Generate two random numbers

num1 = random.randint(1, 9)

num2 = random.randint(1, 9)

Swap the two numbers if num1 is smaller than num2

if num1 < num2:

num1, num2 = num2, num1

Ask question and save answer

print("\n Question {}:".format(count))

user_answer = int(input(" {} - {} = ".format(num1, num2)))

Test correctness

if user_answer == num1 - num2:

print(" Correct!")

num_correct += 1

else:

print(" Incorrect.")

Important: Update count variable!!!

count += 1

Module 5: Loops page 30© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Step 2: Implementation Phase
Get ending time and calculate the total time used

time_end = time.time()

time_used = time_end - time_start

Print Closing Message

print("\n--")

print("Quiz Results:")

print(" You answered {} out of {} questions correct.".format(num_correct,

num_questions))

print(" Time: {:.1f} seconds".format(time_used))

Module 5: Loops page 31© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Sample runs of program:

Module 5: Loops page 32© Dr Jonathan Cazalas

Controlling while Loops

 We’ve seen a couple ways to control a while loop

 Using a count variable and counting some number of
iterations

 Checking for some condition
 Such as the number guessing game

while guess != number

 There are other ways to control the loop as well

 We can control the loop with a user confirmation

 And we can control the loop with a sentinel value

Module 5: Loops page 33© Dr Jonathan Cazalas

Controlling while Loops

 Controlling a Loop with User Confirmation

 The last program (Subtraction Quiz) controlled the loop
with a count
 And we iterated between 5 or 20 times depending on the user

input

 We let the user control the number of iterations

 How?
 We could ask them if they want to answer another question

 We save their answer (“Y” or “N”)

 We then use the answer as a condition of the loop
while another_question == “Y”:

Module 5: Loops page 34© Dr Jonathan Cazalas

Controlling while Loops

 Controlling a Loop with User Confirmation

 Make a new Subtraction Quiz program
 Copy/paste your last code

 Edit it to make the loop user controlled

 Here’s the idea:

another_question = "Y" # used in loop condition to continue quiz (or not)

Notice we do the loop at least one time because we initialized

the another_question variable to "Y"

while another_question.lower() == "y":

#...Loop body here...

Important: UPDATE another_question loop condition variable

print("\n Would you like to answer another")

print(" question (Y or N)? ", end = "")

another_question = input()

count += 1 # used to print Question number

Module 5: Loops page 35© Dr Jonathan Cazalas

Controlling while Loops

 Controlling a Loop a Sentinel Value

 Another technique is to designate a special input value to
stop the loop
 This value is called the sentinel value

 And a loop that uses a sentinel value is called a sentinel-
controlled loop

 Consider the following example…

Module 5: Loops page 36© Dr Jonathan Cazalas

Program 4:
Summing until Sentinel Value

 Write a program that repeatedly asks the user to
enter integer values.

 Your program should sum up all these values, saving the
result in a variable called sum.

 Your program should count how many values were
entered, saving the total in a variable called count.

 Your program should stop reading values once the integer
0 is entered.

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 37© Dr Jonathan Cazalas

Program 4:
Summing until Sentinel Value

 Step 1: Problem-Solving Phase

 Use the design strategy!

 So first think about what should be repeated inside the
loop…
 You should ask the user to enter a value

 We need to add that to the running sum

 And we need to increase count by 1

 Now, wrap those statements in a While True block

 Finally, add on the condition of the while loop

Module 5: Loops page 38© Dr Jonathan Cazalas

Program 4:
Summing until Sentinel Value

 Step 2: Implementation Phase

 Note: we end up having to repeat a line of code
 We prompt and scan the data value inside the loop

 And we also prompt and scan the data once before the loop

Variables used in program

sum = 0

count = 0

Notice that we have to scan the data value once before the loop also

data = int(input("Enter an integer (input ends if it is a 0): "))

The loop continues as long as data does *not* equal zero

while data != 0:

sum += data

count += 1

data = int(input("Enter an integer (input ends if it is a 0): "))

print("\nYou entered {} values for a total sum of {}.".format(count, sum))

Module 5: Loops page 39© Dr Jonathan Cazalas

Controlling while Loops

 Limitations of Python while loop structure

 Often you will absolutely want to run your loop at least
one time

 Meaning, regardless of the condition, you want to at
execute all the statements inside the loop at least once
 And this is what we needed in the last example

 We wanted to read a user integer at least one time

 Most languages have a do/while loop

 In short, this loop structure “does” (the do part) the loop one
time

 Then, the continue condition is checked at the end of the loop

 This would have been a better solution to the last problem

Module 5: Loops page 40© Dr Jonathan Cazalas

Controlling while Loops

 Limitations of Python while loop structure

 Python does not have a do/while loop structure

 So what is a workaround?

 If we have a problem where we absolutely want to “do”
the loop one time, regardless of condition, how can we
do this in Python?

 Simple!
 And in fact, the solution is common in programming

 We just use a while True: loop
 Meaning…the condition is always true!

 Then, inside the loop, we have a an if statement

 If the specified condition is met, we use break to exit the loop

Module 5: Loops page 41© Dr Jonathan Cazalas

Program 4:
Summing until Sentinel Value

 Step 2: Implementation Phase

 Let’s modify the last program with this new idea…

 Notice that the logical order of the instructions inside the loop
had to change

Variables used in program

sum = 0

count = 0

while True:

data = int(input("Enter an integer (input ends if it is a 0): "))

Check if the entered value is 0. If so, BREAK

if data == 0:

break

If we did *not* break, increase sum and increment count

sum += data

count += 1

print("\nYou entered {} values for a total sum of {}.".format(count, sum))

Module 5: Loops page 42© Dr Jonathan Cazalas

Controlling while Loops

Check Yourself
 How many times are the following loop bodies repeated?

What is the printout of each loop?

 (a) is infinite and prints nothing

 (b) is infinite and prints nothing

 (c) loops 9 times and prints 2 4 6 8 (each on a different line)

Module 5: Loops page 43© Dr Jonathan Cazalas

Controlling while Loops

Check Yourself
 Suppose the input is 2 3 4 5 0 (one number per line).

What is the output of the following code?

Module 5: Loops page 44© Dr Jonathan Cazalas

The for Loop

 Often you will use a loop to iterate a specific
number of times

 And we use a counter to count the number of iterations

 This is called a counter-controlled loop

 Example:

Initialize loop-control variable

i = initial_value

Iterate as long as i < end_value

while i < end_value:

Loop body

...

Adjust loop-control variable

i += 1

Module 5: Loops page 45© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 The general syntax is:
for var in sequence:

Loop body

usually, we do something with “var”

 Here, var stands for variable
 You can name it what you want…you are the programmer!

 A sequence holds multiple items of data, stored one after
another

 We’ll study different types of sequences later in the semester

for i in range(initialValue, endValue):

Loop body

Module 5: Loops page 46© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Example for loop:

 Note what gets printed to the output:

 So we loop from initial_value to end_value - 1

for i in range(4, 8):

print(i)

Module 5: Loops page 47© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Another example:

 Output:

 This would have been the same as: for i in range(0, 5):

for sarah in range(5):

print(sarah)

Module 5: Loops page 48© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:
 Number of arguments of range() method:

 One argument:
 If there is only one argument, such as range(5), this assumes an initial_value

of 0

 Two arguments:
 If there are two arguments, such as range(5, 10), this is gives the initial_value

(5) and the end_value (10)

 Although, remember, the loop does *not* execute on 10

 Three arguments:
 If there are three arguments, the first two are initial_value and end_value

 The third argument is the step size

 Normally, step size is assumed to be +1

 Meaning, just add one to the counter at each iteration

 But we can use a different step size, and even a negative step size

Module 5: Loops page 49© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Another example (step size 2):

 Output:

 So the step size is 2 and we stop before 10

for mike in range(1, 10, 2):

print(mike)

Module 5: Loops page 50© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Another example (step size 5):

 Output:

 So the step size is 5 and we stop before 30

for barbara in range(0, 30, 5):

print(barbara)

Module 5: Loops page 51© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Another example (counting backwards):

 Output:

 So the step size is -1 and we stop before 0

for x in range(5, 0, -1):

print(x)

Module 5: Loops page 52© Dr Jonathan Cazalas

The for Loop

Check Yourself
 Suppose the input is 2 3 4 5 0 (one number per line).

What is the output of the following code?

Module 5: Loops page 53© Dr Jonathan Cazalas

The for Loop

Check Yourself
 Convert the following for loop into a while loop:

 Answer:

sum = 0

for i in range(1001):

sum = sum + i

i = 0

sum = 0

while i < 1001:

sum = sum + i

i += 1

Module 5: Loops page 54© Dr Jonathan Cazalas

The for Loop

Check Yourself
 Count the number of iterations of each of the following
for loops (assume n = 10)

Iterations: 10 # Iterations: 10

Iterations: 5 # Iterations: 2

Module 5: Loops page 55© Dr Jonathan Cazalas

The for Loop

 Which loop should you use?

 Each has a purpose!

 When should for loops be used?

 when you know how many iterations you need

 or when you know the range of values to loop over

 When should while loops be used?

 When you should loop, indefinitely, as long as a given condition is
true

Module 5: Loops page 56© Dr Jonathan Cazalas

Nested Loops

 Loops can be nested inside other loops!

 The first loop is considered the outer loop

 Then, inside this outer loop can be one or more inner
loops

 Each time the outer loop is repeated, the inner loops are
again restarted and begin anew

Module 5: Loops page 57© Dr Jonathan Cazalas

Nested Loops

 Loops can be nested inside other loops!

 Example:

 Output:

for i in range(1, 4):

for j in range(1, 4):

print("i: {} j: {}".format(i, j))

Module 5: Loops page 58© Dr Jonathan Cazalas

Program 5: Multiplication Table

 Write a program that will display the following
multiplication table:

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 59© Dr Jonathan Cazalas

Program 5: Multiplication Table

 Step 1: Problem-Solving Phase

 How many loops do we need?

 Answer:
 2 loops!

 The outer loop will iterate 9 times
 One for each row

 Suggestion: use the word row as your variable name!

 Code this first, so you can feel good about what is being printed

 Then, for EACH iteration of the outer loop, we also have an inner
loop
 And the inner loop will also iterate 9 times

 This inner loop prints the row values

 Example:

 If row = 3, then we print 3*1, 3*2, 3*3, 3*4, 3*5, etc.

Module 5: Loops page 60© Dr Jonathan Cazalas

Program 5: Multiplication Table

 Step 2: Implementation Phase

Print Header

print(" Multiplication Table")

print(" ", end = "")

for i in range(1, 11):

print("{:>4d}".format(i), end = "")

print("\n-----", end = "")

for i in range(1, 11):

print("{:4s}".format("----"), end = "")

print()

Print BODY - use two nested FOR loops

for row in range(1, 11):

Print Row header information

print("{:2d} | ".format(row), end = "")

for col in range(1, 11):

print("{:>4d}".format(row * col), end = "")

Now, print a newline after each row

print()

Module 5: Loops page 61© Dr Jonathan Cazalas

Nested Loops

 Careful!

 Nested loops can be surprisingly short in # of lines of code
 but they can take a long time to run!

 Consider the following example:

 That’s three nested loops!
 And each loop, on its own, runs 1000 times…but they are nested…

 That innermost print statement will get executed 1,000,000,000
times!!!

for i in range(1000):

for j in range(1000):

for k in range(1000):

print("{:>7d}{:>7d}{:>7d}".format(i, j, k))

Module 5: Loops page 62© Dr Jonathan Cazalas

Nested Loops

Check Yourself
 Trace the following program

 Draw a table and show the values of
i and j at each iteration of the loops

 Output:

Program Trace

i j

1 0

2 0

2 1

3 0

3 1

3 2

4 0

4 1

4 2

4 3
0 0 1 0 1 2 0 1 2 3

Module 5: Loops page 63© Dr Jonathan Cazalas

Nested Loops

Check Yourself
 Trace the following program

 Draw a table and show the values of
i and j at each iteration of the loops

Program Trace

2

3 2

4 3 2

i j

0 0

1 1

2 2

3 3

3 2

4 4

4 3

4 2

Module 5: Loops page 64© Dr Jonathan Cazalas

Warmup/Stretching

 Go to my repl.it

 Click on the 2280_NestedLoops_Warmup

 Fork that code

 Stretching Exercise #1:

 Write a loop to perform the following:

Enter an integer: 4

Here are 4 lines, each with an asterisk:

*

*

*

*

Module 5: Loops page 65© Dr Jonathan Cazalas

Warmup/Stretching

 Stretching Exercise #2:

 Write a loop to perform the following:

Enter an integer: 4

Here are 4 lines, each with an asterisk:

*

*

*

*

And now we print a triangle of asterisks:

*

**

Module 5: Loops page 66© Dr Jonathan Cazalas

Program 6: GCD

 Write a program to ask the user to enter two
positive integers. You should then find the greatest
common divisor (GCD) and print the result to the
user.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 67© Dr Jonathan Cazalas

Program 6: GCD

 Step 1: Problem-solving Phase

 First question:

 “What’s a GCD???”

 Answer:
 Greatest Common Divisor

 aka Greatest Common Factor (GCF)

 For Clarity:
 Given two integers, the GCD is the largest integer that perfectly

divides into (or factors from) both of the given integers

Module 5: Loops page 68© Dr Jonathan Cazalas

Program 6: GCD

 Step 1: Problem-solving Phase

 GCD
 Find the largest integer that divides both numbers

 GCD(4,2) = 2

 GCD(16,24) = 8

 GCD(25, 60) = 5

 Cool, so are we ready to code?
 NO!

 Always, first think about the problem

 And understand the solution 200% before coding!

 So how do you calculate the GCD? Discuss this in groups.

Module 5: Loops page 69© Dr Jonathan Cazalas

Program 6: GCD

 Step 1: Problem-solving Phase

 GCD(n1, n2)
 You know that the number 1 is a common divisor

 because 1 divides into everything

 But is 1 the greatest common divisor

 So you can check the next values, one by one
 Check 2, 3, 4, 5, 6, …

 Check if that number “cleanly divides” both integers

 How? Mod! If the mod (%) is zero, this means no remainder.

 Keep checking all the way up to the smaller of n1 or n2

 Whenever you find a new common divisor, this becomes the new
gcd

 After you check all the possibilities, the value in the variable gcd
is the GCD of n1 and n2

?

Module 5: Loops page 70© Dr Jonathan Cazalas

Program 6: GCD

 Step 2: Implementation Phase

Try re-coding this

as a for loop!

Module 5: Loops page 71© Dr Jonathan Cazalas

Nested Loops

Check Yourself
 Trace the following program

 Draw a table and show the values of
i and j at each iteration of the loops

Program Trace
i j

5 1

5 2

5 3

5 4

5 5

4 1

4 2

4 3

4 4

3 1

3 2

3 3

2 1

2 2

1 1

1xxx2xxx 8xxx4xxx 16xxx

1xxx2xxx 8xxx4xxx

1xxx2xxx4xxx

1xxx2xxx

1xxx

Module 5: Loops page 72© Dr Jonathan Cazalas

Nested Loops

Check Yourself
 Trace the following program

 Draw a table and show the values of
i and j at each iteration of the loops

Program Trace

i j

1 1

2 1

2 2

3 1

3 2

3 3

4 1

4 2

4 3

4 4

5 1

5 2

5 3

5 4

5 5

1G

1G3G5G7G9G

1G3G5G7G

1G3G5G

1G3G

Module 5: Loops page 73© Dr Jonathan Cazalas

Minimizing Numerical Errors

 Summary:

 Use of floating-point numbers can cause numerical errors

 Run the following code to see:

 We would expect to see 0.5 printed

 Instead, we get 0.5000000000002

 The answer is not perfectly accurate…it’s a little bit off

 This is due to the limitation of the hardware, something you’ll
learn more about in Computer Organization & Architecture

x = 1.0

x -= .1

x -= .1

x -= .1

x -= .1

x -= .1

print(x)

Module 5: Loops page 74© Dr Jonathan Cazalas

Minimizing Numerical Errors

 Never use floating-point values as loop conditions

 For example, consider the following code:

 If you work this by hand, the expected final value for sum is 50.5
 But what actually gets printed is 49.5

 Why? Because the value of i does not have accurate floating-point values

 And at the final iteration, i is slightly larger than 1 (although it should equal 1)

Initialize sum

sum = 0

Add 0.01, 0.02, ..., 0.99, 1 to sum

i = 0.01

while i <= 1.0:

sum += i # we add i to the running sum

i = i + 0.01 # we “increment” i by 0.01

Display result

print("The sum is", sum)

Module 5: Loops page 75© Dr Jonathan Cazalas

Minimizing Numerical Errors

 Never use floating-point values as loop conditions

 If you need to sum up values similar to the last example,
use a while loop or a for loop as follows:

 In both cases, we simply used an integer count to serve as a
counter variable, counting the 100 iterations of the loops

Initialize sum

sum = 0

count = 0

i = 0.01

while count < 100:

sum += i

i = i + 0.01

count += 1 # Increase count

Display result

print("The sum is", sum)

Initialize sum

sum = 0

i = 0.01

for count in range(100):

sum += i

i = i + 0.01

Display result

print("The sum is", sum)

Module 5: Loops page 76© Dr Jonathan Cazalas

Program 7: Future Tuition

 A university charges $10,000 per year for study
(tuition). The cost of tuition increases 7% every year.
Write a program to determine how many years until
the tuition will increase to $20,000.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 77© Dr Jonathan Cazalas

Program 7: Future Tuition

 Step 1: Problem-solving Phase

 THINK:
 How do we solve this on paper?

 Cost of Year0: $10,000

 Cost of Year1: Year0*1.07

 Cost of Year2: Year1*1.07

 Cost of Year3: Year2*1.07

 …

 So keep computing the tuition until it is at least $20,000

 Once you get to $20,000, print the number of years taken

Module 5: Loops page 78© Dr Jonathan Cazalas

Program 7: Future Tuition

 Step 1: Problem-solving Phase

 THINK:
 Now a closer look at some of the code:

tuition = 10000

year = 0

tuition = tuition*1.07

year += 1

tuition = tuition*1.07

year += 1

tuition = tuition*1.07

year += 1

...

 So we would keep doing this until tuition is greater than or
equal to $20,000

 Then, at that point, we print the value in variable year

 How to do this? Use a while loop!

Module 5: Loops page 79© Dr Jonathan Cazalas

Program 7: Future Tuition

 Step 2: Implementation Phase

Module 5: Loops page 80© Dr Jonathan Cazalas

break and continue

 Extra control within loops:

 Python uses two additional keywords that provide more
control within loops: break and continue

 break:

 We’ve previously jumped ahead and already saw this

 What does break do?
 You can use the break statement, inside a loop, to immediately

terminate/stop the loop

 Example: maybe the loop is running indefinitely

 But you want to stop the loop once some condition is True

 So you test for this condition, and, if True, you use break

 This will immediately terminate/stop that specific loop

Module 5: Loops page 81© Dr Jonathan Cazalas

break and continue

 Extra control within loops:
 break:

 Example:

• The program simply adds the
integers 1 through 20 to the
variable sum.

• But once sum is greater or
equal to 100, the loop stops
by using the keyword break.

Module 5: Loops page 82© Dr Jonathan Cazalas

break and continue

 Extra control within loops:

 Python uses two additional keywords that provide more
control within loops: break and continue

 continue:

 What does continue do?
 You can use the continue statement, inside a loop, to immediately

terminate/stop the current iteration of the loop

 For clarity:

 continue does NOT terminate the entire loop

 continue only stops the current iteration of the loop

 So while break breaks out of the entire loop

 You can consider continue as breaking out of the current iteration

 What really happens?

 The program jumps to “after” the last line of the loop

 Which really means it goes back to the beginning of the loop

Module 5: Loops page 83© Dr Jonathan Cazalas

break and continue

 Extra control within loops:
 continue:

 Example:

• The program adds
integers 1 through 20 to
the variable sum

• But, the program SKIPS
the integers 10 and 11

• So when number is 10 or
number is 11, the
iteration terminates and
those values are not
added to the sum.

Module 5: Loops page 84© Dr Jonathan Cazalas

break and continue

 Extra control within loops:
 So when do we use break and continue?

 Well, you are the programmer! So you choose!

 But when is it a good idea?
 Whenever it simplifies the logic and the code

 We’ll show two more examples of the same problem
 One coded with a break

 And the other without a break

 And on this problem, the break most certainly simplifies
the logic and the code

Module 5: Loops page 85© Dr Jonathan Cazalas

break and continue

 Extra control within loops:

 Example:
 Given an integer as input, write a program to find the smallest

factor of that integer other than 1.

 You could write this as follows:

n = eval(input("Enter an integer >= 2: "))

factor = 2

while True:

IF this is an actual factor...remainder is 0

if n % factor == 0:

break # so we break!

otherwise, increment factor and try again

factor += 1

print("The smallest factor other than 1 for", n, "is", factor)

Module 5: Loops page 86© Dr Jonathan Cazalas

break and continue

 Extra control within loops:

 Example:
 Given an integer as input, write a program to find the smallest

factor of that integer other than 1.

 Or you can write it without a break statement:

 So this works

 But the code with break works cleaner and makes more sense

n = eval(input("Enter an integer >= 2: "))

found = False

factor = 2

while factor <= n and not found:

if n % factor == 0:

found = True

else:

factor += 1

print("The smallest factor other than 1 for", n, "is", factor)

Module 5: Loops page 87© Dr Jonathan Cazalas

Program 8: First 50 Primes

 Write a program to find (and print out) the first 50
prime numbers, printing exactly ten prime numbers
per line.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 88© Dr Jonathan Cazalas

Program 8: First 50 Primes

 Step 1: Problem-solving Phase

 Break this into two parts

 Start by solving the problem of testing if a given number is
a prime number
 We’ve done that before and you likely have the code

 Then, once that is done, wrap that in a Loop
 Problem says to find the first 50 primes

 How many numbers will we need to test to find the first 50 prime
numbers?

 Who knows!

 Thus, we need an open-ended while loop!

Module 5:
Loops

Python Boot Camp

