
Module 5:
Loops

Python Boot Camp

Module 5: Loops page 2© Dr Jonathan Cazalas

CS Jokes

Module 5: Loops page 3© Dr Jonathan Cazalas

Objectives

 To write programs for executing statements repeatedly by using a while loop
(§5.2).

 To develop loops following the loop design strategy (§§5.2.1-5.2.3).

 To control a loop with the user’s confirmation (§5.2.4).

 To control a loop with a sentinel value (§5.2.5).

 To obtain a large amount of input from a file by using input redirection
instead of typing from the keyboard (§5.2.6).

 To use for loops to implement counter-controlled loops (§5.3).

 To write nested loops (§5.4).

 To learn the techniques for minimizing numerical errors (§5.5).

 To learn loops from a variety of examples (GCD, FutureTuition,
MonteCarloSimulation, PrimeNumber) (§§5.6, 5.8).

 To implement program control with break and continue (§5.7).

 To use a loop to control and simulate a random walk (§5.9).

Module 5: Loops page 4© Dr Jonathan Cazalas

Motivation

 What if you wanted to print the same sentence
100 times. How would you do that?

 Example:
 Print “Programming is fun!” 100 times

 Would you really type the following 100 times???

Module 5: Loops page 5© Dr Jonathan Cazalas

Motivation

 Loops

 Python provides a powerful programming construct
called a loop

 Loops control how many times, in succession, an
operation is performed

 Example loop:

 We’ll explain this code shortly

 For now, just showing that we can, in fact, printing 100 lines
without having to type 100 individual statements!

Module 5: Loops page 6© Dr Jonathan Cazalas

Motivation

 Loops

 Python provides two types of loop statements

 while loops and for loops

 while Loops:

 while loops are condition-controlled loops

 They are controlled by a true/false condition

 Executes a statement (or statements) repeatedly so long as the
given condition is true

 for Loops:

 for loops are count controlled loops that repeat a specific number
of times

Module 5: Loops page 7© Dr Jonathan Cazalas

The while Loop

 Python while loop:

 Syntax:
while loop-continuation-condition:

Loop body

Statement(s)

 Consider the flowchart on the right:
 A single execution of the loop body

is called an iteration

 Each loop contains a loop-continuation
condition
 This controls if we execute the loop body

 If True, the loop body is executed

 If False, the entire loop terminates, and
program control goes to the statement that follows the loop

Module 5: Loops page 8© Dr Jonathan Cazalas

The while Loop

 Using a while loop to print 100 times!

 Note:
 The variable count is initially zero

 The loop-continuation condition
checks if count is less than 100

 If True, it prints the message and
then increments count by 1
count = count + 1

 At some point, it will be False
and the loop will exit

Module 5: Loops page 9© Dr Jonathan Cazalas

The while Loop

 Another example

 Suppose we want to sum the first 10 integers
 1 + 2 + 3 + … + 9 + 10

 We can use a while loop for this!

 Algorithm:
 We need to loop 10 times

 So let’s keep a CONSTANT called NUM_TIMES

 We also keep a variable called “sum” and initialize it to 0

 Let’s also use a “count” variable that starts at 1
 And we will increment this variable EACH time we iterate through the loop

 At each iteration, we take the “count” variable and add it to the
“sum” variable

Module 5: Loops page 10© Dr Jonathan Cazalas

The while Loop

 Another example

 Suppose we want to sum the first 9 integers
 1 + 2 + 3 + … + 9

 We can use a while loop for this!

 Consider the following code:

 i is initialized to 1
 but is then incremented to 2, 3, 4, and so on, up to 10

 If i < 10 is True, the program adds i to sum

 When i is 10, i < 10 becomes false, and the loop exits

sum = 0

i = 1

while i < 10:

sum = sum + i

i = i + 1

print("sum is", sum) # sum is 45

Go run this in
Thonny on the
Debugger!

Module 5: Loops page 11© Dr Jonathan Cazalas

The while Loop

 Another example

 What would be wrong with the following code?

 Answer:
 The loop would never exit!

 In fact, this is called an infinite loop

 Since the increment statement is outside the loop, i never
increases beyond 1
 So i < 10 always evaluates to True

sum = 0

i = 1

while i < 10:

sum = sum + i

i = i + 1

Module 5: Loops page 12© Dr Jonathan Cazalas

The while Loop

 Caution: off-by-one error

 New programmers often execute a loop one time more
(or less) than was intended

 Consider the following code:

 The message is displayed 101 times
 Here count started at 0

 And the condition was count <= 100

 How to correct:
 Make count start at 1, or

 Make the condition as count < 100

Module 5: Loops page 13© Dr Jonathan Cazalas

Program 1: Repeated Subtraction

 Remember our subtraction program. We asked
the user to answer a basic subtraction question.
Let’s rewrite that program by repeatedly asking
the same question if the user enters the incorrect
result.

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 14© Dr Jonathan Cazalas

Program 1: Repeated Subtraction

 Step 1: Problem-Solving Phase

 Let’s start by looking at some output

Module 5: Loops page 15© Dr Jonathan Cazalas

Program 1: Repeated Subtraction

 Step 1: Problem-Solving Phase

 Like last time:
 We need to randomly generate two numbers

 We need to make sure the first number is *not* smaller than the
second number
 If it is, swap them using simultaneous assignment

 Now, we ask the user to enter an answer
 And we save the their input a variable called answer

 Next we have a while loop

 In this loop, we will repeatedly tell them their answer is incorrect
and will re-ask them the same question

 What is the condition of this while loop?

 The loop executes as long as num1 – num2 != answer

Module 5: Loops page 16© Dr Jonathan Cazalas

Program 1: Repeated Subtraction

 Step 2: Implementation Phase
import random

1. Generate two random single-digit integers

number1 = random.randint(0, 9)

number2 = random.randint(0, 9)

2. If number1 < number2, swap number1 with number2

if number1 < number2:

number1, number2 = number2, number1

3. Prompt the student to answer the subtraction question

print("Please answer the following:\n")

print("\t{} - {} = ".format(number1, number2), end = '')

answer = int(input())

4. Repeatedly ask the question until the answer is correct

while number1 - number2 != answer:

print("\nThat is incorrect. Please try again:\n")

print("\t{} - {} = ".format(number1, number2), end = '')

answer = int(input())

print("\nYou got it!")

Module 5: Loops page 17© Dr Jonathan Cazalas

Loop Design Strategies

 Some loops are straightforward

 Others require some thought

 Consider the following loop-design strategy:

1. Identify the statements that need to be repeated.

2. Wrap these statements in a loop like this:
while True:

Statements

3. Code the loop-continuation-condition and add
appropriate statements for controlling the loop.
while loop-continuation-condition:

Statements

Additional statements for controlling the loop

Module 5: Loops page 18© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 You should write a program to play the famous
number guessing game from childhood.

 “I have a number from 1 to 100. Guess that number in as
few guesses as possible.”

 Your program should randomly generate a number and
then ask the user to repeatedly guess that number until
they finally get it correct.

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 19© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 1: Problem-Solving Phase

 Let’s start by looking at a run of the program…

Module 5: Loops page 20© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase

 Remember the design strategy:

1. Identify the statements that need to be repeated.

Module 5: Loops page 21© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase
import random

STEP 0: Statements OUTSIDE the Loop

number = random.randint(1, 100)

print("**")

print("* Number Guessing Game *")

print("**")

print(" Guess a number between 1 and 100.")

REMEMBER STEP 1:

Identify the statements that must be repeated...

Prompt the user to guess the number

guess = eval(input(" Enter your guess: "))

Use if/elif/else statement to print appropriate message

if guess == number:

print(" Yes, the number is", number)

elif guess > number:

print(" Your guess is too high")

else:

print(" Your guess is too low")

Module 5: Loops page 22© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase

 Remember the design strategy:

1. Identify the statements that need to be repeated.

2. Wrap these statements in a loop like this:
while True:

Statements

Module 5: Loops page 23© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase
import random

STEP 0: Statements OUTSIDE the Loop

number = random.randint(1, 100)

print("**")

print("* Number Guessing Game *")

print("**")

print(" Guess a number between 1 and 100.")

REMEMBER STEP 2:

Wrap these statements in a while True loop

while True:

Prompt the user to guess the number

guess = eval(input(" Enter your guess: "))

Use if/elif/else statement to print appropriate message

if guess == number:

print(" Yes, the number is", number)

elif guess > number:

print(" Your guess is too high")

else:

print(" Your guess is too low")

Module 5: Loops page 24© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase

 Remember the design strategy:

1. Identify the statements that need to be repeated.

2. Wrap these statements in a loop like this:
while True:

Statements

3. Code the loop-continuation-condition and add
appropriate statements for controlling the loop.
while loop-continuation-condition:

Statements

Additional statements for controlling the loop

Module 5: Loops page 25© Dr Jonathan Cazalas

Program 2:
Guessing Number Game

 Step 2: Implementation Phase
import random

Generate a random number to be guessed

number = random.randint(1, 100)

print("**")

print("* Number Guessing Game *")

print("**")

print(" Guess a number between 1 and 100.")

Note that we must initialize guess to -1 in order to enter loop

guess = -1

while guess != number:

Prompt the user to guess the number

guess = eval(input(" Enter your guess: "))

Use if/elif/else statement to print appropriate message

if guess == number:

print(" Yes, the number is", number)

elif guess > number:

print(" Your guess is too high")

else:

print(" Your guess is too low")

Module 5: Loops page 26© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Now that we know loops, we can make a better
subtraction quiz!

 Let’s ask the user how many subtraction questions they
would like to answer.

 We will then loop exactly that many times

 At the end, we will tell them how many were correct

 We will tell them how long they took to complete the quiz

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 27© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Step 1: Problem-Solving Phase

 Let’s think about what is involved here:
1. Asking how many questions should be on the quiz.

 That’s easy. Just ask and save answer as num_questions

2. For a single iteration of the loop, what happens in the loop?
 We must generate two random numbers

 We must swap them if the first number is smaller than the second

 We must ask the question, read user answer, print a correct/incorrect
message, and finally update num_correct if necessary

3. How do we loop that many times?
 Use a variable count and loop while count <= num_questions

4. And how do we time the quiz? Use time.time()
 Use it once at beginning and once at the end…then subtract the difference!

 The difference will be the number of seconds used during the quiz

Module 5: Loops page 28© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Step 2: Implementation Phase
import random

import time

Generate a random number to be guessed

number = random.randint(1, 100)

print("**")

print("* Subtraction Quiz *")

print("**")

print(" How many questions would you like")

print(" to answer (5 to 20): ", end = "")

num_questions = int(input())

Setup variables

num_correct = 0 # keeps track of the number of correct answers

count = 1 # variable used to count number of questions

time_start = time.time() # get starting time in seconds

Module 5: Loops page 29© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Step 2: Implementation Phase
Notice the condition of the loop using <= because started count at 1

while count <= num_questions:

Generate two random numbers

num1 = random.randint(1, 9)

num2 = random.randint(1, 9)

Swap the two numbers if num1 is smaller than num2

if num1 < num2:

num1, num2 = num2, num1

Ask question and save answer

print("\n Question {}:".format(count))

user_answer = int(input(" {} - {} = ".format(num1, num2)))

Test correctness

if user_answer == num1 - num2:

print(" Correct!")

num_correct += 1

else:

print(" Incorrect.")

Important: Update count variable!!!

count += 1

Module 5: Loops page 30© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Step 2: Implementation Phase
Get ending time and calculate the total time used

time_end = time.time()

time_used = time_end - time_start

Print Closing Message

print("\n--")

print("Quiz Results:")

print(" You answered {} out of {} questions correct.".format(num_correct,

num_questions))

print(" Time: {:.1f} seconds".format(time_used))

Module 5: Loops page 31© Dr Jonathan Cazalas

Program 3:
Larger Subtraction Quiz

 Sample runs of program:

Module 5: Loops page 32© Dr Jonathan Cazalas

Controlling while Loops

 We’ve seen a couple ways to control a while loop

 Using a count variable and counting some number of
iterations

 Checking for some condition
 Such as the number guessing game

while guess != number

 There are other ways to control the loop as well

 We can control the loop with a user confirmation

 And we can control the loop with a sentinel value

Module 5: Loops page 33© Dr Jonathan Cazalas

Controlling while Loops

 Controlling a Loop with User Confirmation

 The last program (Subtraction Quiz) controlled the loop
with a count
 And we iterated between 5 or 20 times depending on the user

input

 We let the user control the number of iterations

 How?
 We could ask them if they want to answer another question

 We save their answer (“Y” or “N”)

 We then use the answer as a condition of the loop
while another_question == “Y”:

Module 5: Loops page 34© Dr Jonathan Cazalas

Controlling while Loops

 Controlling a Loop with User Confirmation

 Make a new Subtraction Quiz program
 Copy/paste your last code

 Edit it to make the loop user controlled

 Here’s the idea:

another_question = "Y" # used in loop condition to continue quiz (or not)

Notice we do the loop at least one time because we initialized

the another_question variable to "Y"

while another_question.lower() == "y":

#...Loop body here...

Important: UPDATE another_question loop condition variable

print("\n Would you like to answer another")

print(" question (Y or N)? ", end = "")

another_question = input()

count += 1 # used to print Question number

Module 5: Loops page 35© Dr Jonathan Cazalas

Controlling while Loops

 Controlling a Loop a Sentinel Value

 Another technique is to designate a special input value to
stop the loop
 This value is called the sentinel value

 And a loop that uses a sentinel value is called a sentinel-
controlled loop

 Consider the following example…

Module 5: Loops page 36© Dr Jonathan Cazalas

Program 4:
Summing until Sentinel Value

 Write a program that repeatedly asks the user to
enter integer values.

 Your program should sum up all these values, saving the
result in a variable called sum.

 Your program should count how many values were
entered, saving the total in a variable called count.

 Your program should stop reading values once the integer
0 is entered.

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 37© Dr Jonathan Cazalas

Program 4:
Summing until Sentinel Value

 Step 1: Problem-Solving Phase

 Use the design strategy!

 So first think about what should be repeated inside the
loop…
 You should ask the user to enter a value

 We need to add that to the running sum

 And we need to increase count by 1

 Now, wrap those statements in a While True block

 Finally, add on the condition of the while loop

Module 5: Loops page 38© Dr Jonathan Cazalas

Program 4:
Summing until Sentinel Value

 Step 2: Implementation Phase

 Note: we end up having to repeat a line of code
 We prompt and scan the data value inside the loop

 And we also prompt and scan the data once before the loop

Variables used in program

sum = 0

count = 0

Notice that we have to scan the data value once before the loop also

data = int(input("Enter an integer (input ends if it is a 0): "))

The loop continues as long as data does *not* equal zero

while data != 0:

sum += data

count += 1

data = int(input("Enter an integer (input ends if it is a 0): "))

print("\nYou entered {} values for a total sum of {}.".format(count, sum))

Module 5: Loops page 39© Dr Jonathan Cazalas

Controlling while Loops

 Limitations of Python while loop structure

 Often you will absolutely want to run your loop at least
one time

 Meaning, regardless of the condition, you want to at
execute all the statements inside the loop at least once
 And this is what we needed in the last example

 We wanted to read a user integer at least one time

 Most languages have a do/while loop

 In short, this loop structure “does” (the do part) the loop one
time

 Then, the continue condition is checked at the end of the loop

 This would have been a better solution to the last problem

Module 5: Loops page 40© Dr Jonathan Cazalas

Controlling while Loops

 Limitations of Python while loop structure

 Python does not have a do/while loop structure

 So what is a workaround?

 If we have a problem where we absolutely want to “do”
the loop one time, regardless of condition, how can we
do this in Python?

 Simple!
 And in fact, the solution is common in programming

 We just use a while True: loop
 Meaning…the condition is always true!

 Then, inside the loop, we have a an if statement

 If the specified condition is met, we use break to exit the loop

Module 5: Loops page 41© Dr Jonathan Cazalas

Program 4:
Summing until Sentinel Value

 Step 2: Implementation Phase

 Let’s modify the last program with this new idea…

 Notice that the logical order of the instructions inside the loop
had to change

Variables used in program

sum = 0

count = 0

while True:

data = int(input("Enter an integer (input ends if it is a 0): "))

Check if the entered value is 0. If so, BREAK

if data == 0:

break

If we did *not* break, increase sum and increment count

sum += data

count += 1

print("\nYou entered {} values for a total sum of {}.".format(count, sum))

Module 5: Loops page 42© Dr Jonathan Cazalas

Controlling while Loops

Check Yourself
 How many times are the following loop bodies repeated?

What is the printout of each loop?

 (a) is infinite and prints nothing

 (b) is infinite and prints nothing

 (c) loops 9 times and prints 2 4 6 8 (each on a different line)

Module 5: Loops page 43© Dr Jonathan Cazalas

Controlling while Loops

Check Yourself
 Suppose the input is 2 3 4 5 0 (one number per line).

What is the output of the following code?

Module 5: Loops page 44© Dr Jonathan Cazalas

The for Loop

 Often you will use a loop to iterate a specific
number of times

 And we use a counter to count the number of iterations

 This is called a counter-controlled loop

 Example:

Initialize loop-control variable

i = initial_value

Iterate as long as i < end_value

while i < end_value:

Loop body

...

Adjust loop-control variable

i += 1

Module 5: Loops page 45© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 The general syntax is:
for var in sequence:

Loop body

usually, we do something with “var”

 Here, var stands for variable
 You can name it what you want…you are the programmer!

 A sequence holds multiple items of data, stored one after
another

 We’ll study different types of sequences later in the semester

for i in range(initialValue, endValue):

Loop body

Module 5: Loops page 46© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Example for loop:

 Note what gets printed to the output:

 So we loop from initial_value to end_value - 1

for i in range(4, 8):

print(i)

Module 5: Loops page 47© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Another example:

 Output:

 This would have been the same as: for i in range(0, 5):

for sarah in range(5):

print(sarah)

Module 5: Loops page 48© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:
 Number of arguments of range() method:

 One argument:
 If there is only one argument, such as range(5), this assumes an initial_value

of 0

 Two arguments:
 If there are two arguments, such as range(5, 10), this is gives the initial_value

(5) and the end_value (10)

 Although, remember, the loop does *not* execute on 10

 Three arguments:
 If there are three arguments, the first two are initial_value and end_value

 The third argument is the step size

 Normally, step size is assumed to be +1

 Meaning, just add one to the counter at each iteration

 But we can use a different step size, and even a negative step size

Module 5: Loops page 49© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Another example (step size 2):

 Output:

 So the step size is 2 and we stop before 10

for mike in range(1, 10, 2):

print(mike)

Module 5: Loops page 50© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Another example (step size 5):

 Output:

 So the step size is 5 and we stop before 30

for barbara in range(0, 30, 5):

print(barbara)

Module 5: Loops page 51© Dr Jonathan Cazalas

The for Loop

 We can use a for loop to simplify the last example:

 Another example (counting backwards):

 Output:

 So the step size is -1 and we stop before 0

for x in range(5, 0, -1):

print(x)

Module 5: Loops page 52© Dr Jonathan Cazalas

The for Loop

Check Yourself
 Suppose the input is 2 3 4 5 0 (one number per line).

What is the output of the following code?

Module 5: Loops page 53© Dr Jonathan Cazalas

The for Loop

Check Yourself
 Convert the following for loop into a while loop:

 Answer:

sum = 0

for i in range(1001):

sum = sum + i

i = 0

sum = 0

while i < 1001:

sum = sum + i

i += 1

Module 5: Loops page 54© Dr Jonathan Cazalas

The for Loop

Check Yourself
 Count the number of iterations of each of the following
for loops (assume n = 10)

Iterations: 10 # Iterations: 10

Iterations: 5 # Iterations: 2

Module 5: Loops page 55© Dr Jonathan Cazalas

The for Loop

 Which loop should you use?

 Each has a purpose!

 When should for loops be used?

 when you know how many iterations you need

 or when you know the range of values to loop over

 When should while loops be used?

 When you should loop, indefinitely, as long as a given condition is
true

Module 5: Loops page 56© Dr Jonathan Cazalas

Nested Loops

 Loops can be nested inside other loops!

 The first loop is considered the outer loop

 Then, inside this outer loop can be one or more inner
loops

 Each time the outer loop is repeated, the inner loops are
again restarted and begin anew

Module 5: Loops page 57© Dr Jonathan Cazalas

Nested Loops

 Loops can be nested inside other loops!

 Example:

 Output:

for i in range(1, 4):

for j in range(1, 4):

print("i: {} j: {}".format(i, j))

Module 5: Loops page 58© Dr Jonathan Cazalas

Program 5: Multiplication Table

 Write a program that will display the following
multiplication table:

 Remember:

 Step 1: Problem-Solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 59© Dr Jonathan Cazalas

Program 5: Multiplication Table

 Step 1: Problem-Solving Phase

 How many loops do we need?

 Answer:
 2 loops!

 The outer loop will iterate 9 times
 One for each row

 Suggestion: use the word row as your variable name!

 Code this first, so you can feel good about what is being printed

 Then, for EACH iteration of the outer loop, we also have an inner
loop
 And the inner loop will also iterate 9 times

 This inner loop prints the row values

 Example:

 If row = 3, then we print 3*1, 3*2, 3*3, 3*4, 3*5, etc.

Module 5: Loops page 60© Dr Jonathan Cazalas

Program 5: Multiplication Table

 Step 2: Implementation Phase

Print Header

print(" Multiplication Table")

print(" ", end = "")

for i in range(1, 11):

print("{:>4d}".format(i), end = "")

print("\n-----", end = "")

for i in range(1, 11):

print("{:4s}".format("----"), end = "")

print()

Print BODY - use two nested FOR loops

for row in range(1, 11):

Print Row header information

print("{:2d} | ".format(row), end = "")

for col in range(1, 11):

print("{:>4d}".format(row * col), end = "")

Now, print a newline after each row

print()

Module 5: Loops page 61© Dr Jonathan Cazalas

Nested Loops

 Careful!

 Nested loops can be surprisingly short in # of lines of code
 but they can take a long time to run!

 Consider the following example:

 That’s three nested loops!
 And each loop, on its own, runs 1000 times…but they are nested…

 That innermost print statement will get executed 1,000,000,000
times!!!

for i in range(1000):

for j in range(1000):

for k in range(1000):

print("{:>7d}{:>7d}{:>7d}".format(i, j, k))

Module 5: Loops page 62© Dr Jonathan Cazalas

Nested Loops

Check Yourself
 Trace the following program

 Draw a table and show the values of
i and j at each iteration of the loops

 Output:

Program Trace

i j

1 0

2 0

2 1

3 0

3 1

3 2

4 0

4 1

4 2

4 3
0 0 1 0 1 2 0 1 2 3

Module 5: Loops page 63© Dr Jonathan Cazalas

Nested Loops

Check Yourself
 Trace the following program

 Draw a table and show the values of
i and j at each iteration of the loops

Program Trace

2

3 2

4 3 2

i j

0 0

1 1

2 2

3 3

3 2

4 4

4 3

4 2

Module 5: Loops page 64© Dr Jonathan Cazalas

Warmup/Stretching

 Go to my repl.it

 Click on the 2280_NestedLoops_Warmup

 Fork that code

 Stretching Exercise #1:

 Write a loop to perform the following:

Enter an integer: 4

Here are 4 lines, each with an asterisk:

*

*

*

*

Module 5: Loops page 65© Dr Jonathan Cazalas

Warmup/Stretching

 Stretching Exercise #2:

 Write a loop to perform the following:

Enter an integer: 4

Here are 4 lines, each with an asterisk:

*

*

*

*

And now we print a triangle of asterisks:

*

**

Module 5: Loops page 66© Dr Jonathan Cazalas

Program 6: GCD

 Write a program to ask the user to enter two
positive integers. You should then find the greatest
common divisor (GCD) and print the result to the
user.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 67© Dr Jonathan Cazalas

Program 6: GCD

 Step 1: Problem-solving Phase

 First question:

 “What’s a GCD???”

 Answer:
 Greatest Common Divisor

 aka Greatest Common Factor (GCF)

 For Clarity:
 Given two integers, the GCD is the largest integer that perfectly

divides into (or factors from) both of the given integers

Module 5: Loops page 68© Dr Jonathan Cazalas

Program 6: GCD

 Step 1: Problem-solving Phase

 GCD
 Find the largest integer that divides both numbers

 GCD(4,2) = 2

 GCD(16,24) = 8

 GCD(25, 60) = 5

 Cool, so are we ready to code?
 NO!

 Always, first think about the problem

 And understand the solution 200% before coding!

 So how do you calculate the GCD? Discuss this in groups.

Module 5: Loops page 69© Dr Jonathan Cazalas

Program 6: GCD

 Step 1: Problem-solving Phase

 GCD(n1, n2)
 You know that the number 1 is a common divisor

 because 1 divides into everything

 But is 1 the greatest common divisor

 So you can check the next values, one by one
 Check 2, 3, 4, 5, 6, …

 Check if that number “cleanly divides” both integers

 How? Mod! If the mod (%) is zero, this means no remainder.

 Keep checking all the way up to the smaller of n1 or n2

 Whenever you find a new common divisor, this becomes the new
gcd

 After you check all the possibilities, the value in the variable gcd
is the GCD of n1 and n2

?

Module 5: Loops page 70© Dr Jonathan Cazalas

Program 6: GCD

 Step 2: Implementation Phase

Try re-coding this

as a for loop!

Module 5: Loops page 71© Dr Jonathan Cazalas

Nested Loops

Check Yourself
 Trace the following program

 Draw a table and show the values of
i and j at each iteration of the loops

Program Trace
i j

5 1

5 2

5 3

5 4

5 5

4 1

4 2

4 3

4 4

3 1

3 2

3 3

2 1

2 2

1 1

1xxx2xxx 8xxx4xxx 16xxx

1xxx2xxx 8xxx4xxx

1xxx2xxx4xxx

1xxx2xxx

1xxx

Module 5: Loops page 72© Dr Jonathan Cazalas

Nested Loops

Check Yourself
 Trace the following program

 Draw a table and show the values of
i and j at each iteration of the loops

Program Trace

i j

1 1

2 1

2 2

3 1

3 2

3 3

4 1

4 2

4 3

4 4

5 1

5 2

5 3

5 4

5 5

1G

1G3G5G7G9G

1G3G5G7G

1G3G5G

1G3G

Module 5: Loops page 73© Dr Jonathan Cazalas

Minimizing Numerical Errors

 Summary:

 Use of floating-point numbers can cause numerical errors

 Run the following code to see:

 We would expect to see 0.5 printed

 Instead, we get 0.5000000000002

 The answer is not perfectly accurate…it’s a little bit off

 This is due to the limitation of the hardware, something you’ll
learn more about in Computer Organization & Architecture

x = 1.0

x -= .1

x -= .1

x -= .1

x -= .1

x -= .1

print(x)

Module 5: Loops page 74© Dr Jonathan Cazalas

Minimizing Numerical Errors

 Never use floating-point values as loop conditions

 For example, consider the following code:

 If you work this by hand, the expected final value for sum is 50.5
 But what actually gets printed is 49.5

 Why? Because the value of i does not have accurate floating-point values

 And at the final iteration, i is slightly larger than 1 (although it should equal 1)

Initialize sum

sum = 0

Add 0.01, 0.02, ..., 0.99, 1 to sum

i = 0.01

while i <= 1.0:

sum += i # we add i to the running sum

i = i + 0.01 # we “increment” i by 0.01

Display result

print("The sum is", sum)

Module 5: Loops page 75© Dr Jonathan Cazalas

Minimizing Numerical Errors

 Never use floating-point values as loop conditions

 If you need to sum up values similar to the last example,
use a while loop or a for loop as follows:

 In both cases, we simply used an integer count to serve as a
counter variable, counting the 100 iterations of the loops

Initialize sum

sum = 0

count = 0

i = 0.01

while count < 100:

sum += i

i = i + 0.01

count += 1 # Increase count

Display result

print("The sum is", sum)

Initialize sum

sum = 0

i = 0.01

for count in range(100):

sum += i

i = i + 0.01

Display result

print("The sum is", sum)

Module 5: Loops page 76© Dr Jonathan Cazalas

Program 7: Future Tuition

 A university charges $10,000 per year for study
(tuition). The cost of tuition increases 7% every year.
Write a program to determine how many years until
the tuition will increase to $20,000.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 77© Dr Jonathan Cazalas

Program 7: Future Tuition

 Step 1: Problem-solving Phase

 THINK:
 How do we solve this on paper?

 Cost of Year0: $10,000

 Cost of Year1: Year0*1.07

 Cost of Year2: Year1*1.07

 Cost of Year3: Year2*1.07

 …

 So keep computing the tuition until it is at least $20,000

 Once you get to $20,000, print the number of years taken

Module 5: Loops page 78© Dr Jonathan Cazalas

Program 7: Future Tuition

 Step 1: Problem-solving Phase

 THINK:
 Now a closer look at some of the code:

tuition = 10000

year = 0

tuition = tuition*1.07

year += 1

tuition = tuition*1.07

year += 1

tuition = tuition*1.07

year += 1

...

 So we would keep doing this until tuition is greater than or
equal to $20,000

 Then, at that point, we print the value in variable year

 How to do this? Use a while loop!

Module 5: Loops page 79© Dr Jonathan Cazalas

Program 7: Future Tuition

 Step 2: Implementation Phase

Module 5: Loops page 80© Dr Jonathan Cazalas

break and continue

 Extra control within loops:

 Python uses two additional keywords that provide more
control within loops: break and continue

 break:

 We’ve previously jumped ahead and already saw this

 What does break do?
 You can use the break statement, inside a loop, to immediately

terminate/stop the loop

 Example: maybe the loop is running indefinitely

 But you want to stop the loop once some condition is True

 So you test for this condition, and, if True, you use break

 This will immediately terminate/stop that specific loop

Module 5: Loops page 81© Dr Jonathan Cazalas

break and continue

 Extra control within loops:
 break:

 Example:

• The program simply adds the
integers 1 through 20 to the
variable sum.

• But once sum is greater or
equal to 100, the loop stops
by using the keyword break.

Module 5: Loops page 82© Dr Jonathan Cazalas

break and continue

 Extra control within loops:

 Python uses two additional keywords that provide more
control within loops: break and continue

 continue:

 What does continue do?
 You can use the continue statement, inside a loop, to immediately

terminate/stop the current iteration of the loop

 For clarity:

 continue does NOT terminate the entire loop

 continue only stops the current iteration of the loop

 So while break breaks out of the entire loop

 You can consider continue as breaking out of the current iteration

 What really happens?

 The program jumps to “after” the last line of the loop

 Which really means it goes back to the beginning of the loop

Module 5: Loops page 83© Dr Jonathan Cazalas

break and continue

 Extra control within loops:
 continue:

 Example:

• The program adds
integers 1 through 20 to
the variable sum

• But, the program SKIPS
the integers 10 and 11

• So when number is 10 or
number is 11, the
iteration terminates and
those values are not
added to the sum.

Module 5: Loops page 84© Dr Jonathan Cazalas

break and continue

 Extra control within loops:
 So when do we use break and continue?

 Well, you are the programmer! So you choose!

 But when is it a good idea?
 Whenever it simplifies the logic and the code

 We’ll show two more examples of the same problem
 One coded with a break

 And the other without a break

 And on this problem, the break most certainly simplifies
the logic and the code

Module 5: Loops page 85© Dr Jonathan Cazalas

break and continue

 Extra control within loops:

 Example:
 Given an integer as input, write a program to find the smallest

factor of that integer other than 1.

 You could write this as follows:

n = eval(input("Enter an integer >= 2: "))

factor = 2

while True:

IF this is an actual factor...remainder is 0

if n % factor == 0:

break # so we break!

otherwise, increment factor and try again

factor += 1

print("The smallest factor other than 1 for", n, "is", factor)

Module 5: Loops page 86© Dr Jonathan Cazalas

break and continue

 Extra control within loops:

 Example:
 Given an integer as input, write a program to find the smallest

factor of that integer other than 1.

 Or you can write it without a break statement:

 So this works

 But the code with break works cleaner and makes more sense

n = eval(input("Enter an integer >= 2: "))

found = False

factor = 2

while factor <= n and not found:

if n % factor == 0:

found = True

else:

factor += 1

print("The smallest factor other than 1 for", n, "is", factor)

Module 5: Loops page 87© Dr Jonathan Cazalas

Program 8: First 50 Primes

 Write a program to find (and print out) the first 50
prime numbers, printing exactly ten prime numbers
per line.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 5: Loops page 88© Dr Jonathan Cazalas

Program 8: First 50 Primes

 Step 1: Problem-solving Phase

 Break this into two parts

 Start by solving the problem of testing if a given number is
a prime number
 We’ve done that before and you likely have the code

 Then, once that is done, wrap that in a Loop
 Problem says to find the first 50 primes

 How many numbers will we need to test to find the first 50 prime
numbers?

 Who knows!

 Thus, we need an open-ended while loop!

Module 5:
Loops

Python Boot Camp

