
Module 7:
Lists

Python Boot Camp

Module 7: Lists page 2© Dr Jonathan Cazalas

CS Jokes

Module 7: Lists page 3© Dr Jonathan Cazalas

Program 1

 Write a program that asks the user how many
numbers they would like to enter (between 5 and
20). Your program should then read those
numbers (one per line) and should then find the
sum of those numbers.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 7: Lists page 4© Dr Jonathan Cazalas

Program 1

 Step 1: Problem-solving Phase

 First, let’s check out a sample run:

Module 7: Lists page 5© Dr Jonathan Cazalas

Program 1

 Step 1: Problem-solving Phase

 There’s not really much to discuss here

 Ask how many numbers they plan to enter
 Let’s say then enter 8, for example

 Make a for loop to loop that many times

 Each time, print (“Enter the next number: ”) and scan the
next value

 Keep a running sum

 Print out the final sum

 Yes, it’s intended to be very easy

 Go ahead and code this

Module 7: Lists page 6© Dr Jonathan Cazalas

Program 1

 Step 2: Implementation Phase

Module 7: Lists page 7© Dr Jonathan Cazalas

Program 1

 Truth: that was intended to be easy

 It was just a warmup

 And it allowed you to make a starter code, which you
can use to solve what should be an easy problem…

 The following is, logically, only a slight modification…

 Find out how many of the user-inputted numbers
are above the average

Module 7: Lists page 8© Dr Jonathan Cazalas

Program 2

 Write a program that asks the user how many
numbers they would like to enter (between 5 and
20). Your program should then read those
numbers (one per line), should find both the sum
and the average of those numbers, and should
print out how many of the numbers are above
the average.

 Remember:

 Step 1: Problem-solving Phase

 Step 2: Implementation Phase

Module 7: Lists page 9© Dr Jonathan Cazalas

Program 2

 Step 1: Problem-solving Phase

 So the only thing different here is the need to count how
many numbers are above the average

 Give it a shot
 Talk with a neighbor and see what you come up with

 Ideas:
 ?

Module 7: Lists page 10© Dr Jonathan Cazalas

Program 2

 Step 1: Problem-solving Phase

 Now that we have the average, how can we find and
print the user-values that were above the average?

 Hmmm. We did not save each of those 10 values.
 We just read them and added the values to sum.

 That’s a problem!
 Cause after we find the average, we need to again loop over the numbers

to see which ones are above the average

 Okay. Well, one possible solution is to make 10 variables!

 Is that an acceptable solution?

 What if the number of user-inputted values was 10,000?

 Would you make 10,000 variables?

 This is a problem. But it is EASY to solve with Lists!

Module 7: Lists page 11© Dr Jonathan Cazalas

Program 2

 Step 2: Implementation Phase

Module 7: Lists page 12© Dr Jonathan Cazalas

Program 2

 Step 2: Implementation Phase

 Note:
 We don't need to understand all the details right now

 This problem is just to introduce the idea of how a list in
Python works

 Summary: instead of using 10 different variables, we can use
one single variable, a list of size 10

 This one list allows us to save the 10 user values

 Let us now study lists in detail…

Module 7: Lists page 13© Dr Jonathan Cazalas

List Basics

 The list class

 Python provides a class called list that stores a
sequential collection of elements

 This class contains the methods for creating,
manipulating, and processing lists

 Elements in a list can be accessed through an index

Module 7: Lists page 14© Dr Jonathan Cazalas

List Basics

 Creating Lists

 Here’s several ways to create lists:
 list1 = list()

 Create an empty list

 list2 = list([2, 3, 4])

 Create a list with elements 2, 3, 4

 list3 = list(["red", "green", "blue"])

 Create a list with strings

 list4 = list(range(3, 6))

 Create a list with elements 3, 4, 5

 list5 = list("abcd")

 Create a list with characters a, b, c, d

Module 7: Lists page 15© Dr Jonathan Cazalas

List Basics

 Creating Lists

 You can also use a simpler syntax:
 list1 = []

 Same as list()

 list2 = [2, 3, 4]

 Same as list([2, 3, 4])

 list3 = ["red", "green"]

 Same as list(["red", "green"])

 You can see that the elements in a list are separated by
commas and enclosed by a pair of brackets ([])

 A list can also contain elements of mixed type:
 list4 = [2, "three", 4]

Module 7: Lists page 16© Dr Jonathan Cazalas

List Basics

 Lists is a Sequence Type

 Like strings, lists are sequence types in Python
 A string is a sequence of characters

 A list is a sequence of any element

 Python has built-in operators that work on sequences

 Examples:
 Given a sequence, s,

 s[i] will give the ith element in the list

 “x in s” will return True if the element x is in the sequence s

 min(s) will give the smallest element in the sequence s

 max(s) will give the largest element in the sequence s

 The following table summarizes sequence operators…

Module 7: Lists page 17© Dr Jonathan Cazalas

List Basics

 Common Operators for a Sequence s

Module 7: Lists page 18© Dr Jonathan Cazalas

List Basics

 Examples:

Module 7: Lists page 19© Dr Jonathan Cazalas

List Basics

 Index Operator []

 So how do you access individual elements in a list?

 Easy: you use the index operator, []

 Syntax:
my_list[index]

 Think of index as being the numerical spot where the given
elements is located within the list

 Note:
 List indexes are 0 based

 Translation:
the range of list indexes is from 0 to len(my_list)-1

Module 7: Lists page 20© Dr Jonathan Cazalas

List Basics

 Index Operator []

 Example:
myList = [5.6, 4.5, 3.3, 13.2, 4.0, 34.33,

34.0, 45.45, 99.993, 11123]

• So this list has
ten elements

• And the elements
range from index 0
to index 9

Module 7: Lists page 21© Dr Jonathan Cazalas

List Basics

 Index Operator []

 myList[index] can be used just like a variable

 As such, it is also known as an indexed variable

 Consider the following code:
myList[2] = myList[0] + myList[1]

 The values in myList[0] and myList[1] are added to myList[2]

 Another example:
for i in range(len(myList)):

myList[i] = i

 The above loop assigns 0 to myList[0], 1 to myList[1], ...,
and 9 to myList[9]

Module 7: Lists page 22© Dr Jonathan Cazalas

List Basics

 Index Operator []

 Caution:
 A common mistake with new programmers is to access lists

outside of their given range (out of bounds)

 This results in a runtime error
 an error that occurs when you run your program

 How do you avoid this mistake?
 It’s not easy

 But in short, never use an index beyond len(myList) – 1

 So if your list is length 80, never use an index beyond 79

Module 7: Lists page 23© Dr Jonathan Cazalas

List Basics

 Index Operator []

 Caution:
 Another mistake is to called the off-by-one error

 This happens when programmers reference the first element in
the list with a 1
 Remember: the first element should be referenced with a 0

 Example:
i = 0

while i <= len(myList):

print(myList[i])

i += 1

 Here, the <= should be replaced by <.

Module 7: Lists page 24© Dr Jonathan Cazalas

List Basics

 Index Operator []

 Negative indexes:
 Python also allows you to use a negative index

 This is something many (or most) other languages do not allow!

 So how are negative indexes used?
 The negative number is a reference position relative to the end of the list

 actual position is obtained by adding the length of the list with the
negative index

 Example:
list1 = [2, 3, 5, 2, 33, 21]

list1[-1] # refers to 21

list1[-3] # refers to 2

Module 7: Lists page 25© Dr Jonathan Cazalas

List Basics

 List Slicing

 Now this is something cool Python does
 And something that many other languages do not do

 Python has a slicing operator

 This operator returns a slice of the list

 Syntax:
list[start : end]

 The slice is a sublist from index start to index end – 1

 Example:
list1 = [2, 3, 5, 7, 9, 1]

list1[2 : 4] # resulting slice is [5, 7]

Module 7: Lists page 26© Dr Jonathan Cazalas

List Basics

 List Slicing

 You can omit the starting or ending index with slicing

 Examples:
list1 = [2, 3, 5, 2, 33, 21]

list1[: 2] # resulting slice is [2, 3]

list1[3 :] # resulting slice is [2, 33, 21]

 Note:
 list1[: 2] is the same as list1[0 : 2]

 list1[3 :] is the same as list1[3 : len(list1)]

 g

Module 7: Lists page 27© Dr Jonathan Cazalas

List Basics

 List Slicing

 You can also use negative indices with slicing

 Examples:
list1 = [2, 3, 5, 2, 33, 21]

list1[1 : -3] # resulting slice is [3, 5]

list1[-4 : -2] # resulting slice is [3, 5]

 Note:
 list1[1 : -3] is the same as list1[1 : -3 + len(list1)]

 list1[-4 : -2] is the same as list1[-4 + len(list1) : -2 + len(list1)]

 Important:
 If start >= end, list[start : end] returns an empty list

 If end specifies a position beyond the end of the list, Python will
use the length of the list for end instead

Module 7: Lists page 28© Dr Jonathan Cazalas

List Basics

 The +, *, in, and not in Operators

 The concatenation operator (+) can be used to join two
lists

 The repetition operator (*) can be used to replicate
elements in a list

 Examples:

Module 7: Lists page 29© Dr Jonathan Cazalas

List Basics

 The +, *, in, and not in Operators

 The in and not in operators are straightforward
 We use them to test if a given value is in a list or if a given

value is not in a list

 Examples:

Module 7: Lists page 30© Dr Jonathan Cazalas

List Basics

 Traversing Elements in a List

 Python has an easy for loop to access each element in a
list

 Syntax:
for u in my_list:

print(u)

 Note that we do not need range

 What if you wanted to traverse the list in a different
order? Or if you wanted to change the list?

 You use a standard for loop with an index variable:
for i in range(0, len(myList), 2):

print(myList[i])

Module 7: Lists page 31© Dr Jonathan Cazalas

List Basics

 Comparing Lists

 Lists can be compared using the comparison operators:
 >, >=, <, <=, ==, and !=

 But for this to work, the two lists must contain the same
type of elements (all int values, all strings, etc.)

 The comparison uses lexicographical ordering:
 The first two elements are compared

 If they differ, this determines the outcome of the comparison

 If they are the same, the next two elements are compared

 And so on

Module 7: Lists page 32© Dr Jonathan Cazalas

List Basics

 Comparing Lists

Module 7: Lists page 33© Dr Jonathan Cazalas

List Basics

 List Comprehensions

 Sounds weird, right.?.

 This is a cool way of making lists in Python

 The list is made with an expression followed by a for
clause, and even perhaps followed by if statements

 The result of this “List Comprehension” is a new list
produced after evaluating the expression

Module 7: Lists page 34© Dr Jonathan Cazalas

List Basics

 List Comprehensions

Module 7: Lists page 35© Dr Jonathan Cazalas

List Basics

 List Methods

 Once you have created a list, you can use the built-in
methods to manipulate the list

Module 7: Lists page 36© Dr Jonathan Cazalas

List Basics

 List Methods

 Examples:

Module 7: Lists page 37© Dr Jonathan Cazalas

List Basics

 List Methods

 And more examples:

Module 7: Lists page 38© Dr Jonathan Cazalas

List Basics

 Splitting a String into a List
 The str class contains a method called split

 Example:
 Consider the following code:

items = "Jane John Peter Susan“

items = items.split()

 This splits the string, items, based on the spaces

 The result is a list with four elements:
 ['Jane', 'John', 'Peter', 'Susan']

 Again, the delimiter used to split was a space

 We could also split using a different delimiter…

Module 7: Lists page 39© Dr Jonathan Cazalas

List Basics

 Splitting a String into a List

 Example:
 Consider the following code:

items = “11/28/2018“

Items = items.split(“/”)

 This splits the string, items, based on the forward slash (/)

 The result is a list with three elements:
 ['11', '28', '2018']

Module 7: Lists page 40© Dr Jonathan Cazalas

List Basics

 Inputting Lists

 It’s often helpful to read data directly into a list

 Consider the following code:
lst = [] # Create a list

print("Enter 10 numbers: ")

for i in range(10):

lst.append(eval(input())

 Note:
 This assumes entering one number per line

Module 7: Lists page 41© Dr Jonathan Cazalas

List Basics

 Inputting Lists

 What if the user wants to enter all numbers on the same
line? How can we do that?

 Read the whole line

 Split the line based on spaces
 That results in a list of strings

 Even though we know it’s really a list of numbers (inside strings)

 Then use a “List Comprehension” to make a new list of
numbers from this list of strings…

Module 7: Lists page 42© Dr Jonathan Cazalas

List Basics

 Inputting Lists

 What if the user wants to enter all numbers on the same
line? How can we do that?

 Here’s the code:
line = input("Enter 10 vals separated by spaces: ")

items = line.split()

lst = [eval(x) for x in items]

 So we read the full input string as a single line of characters

 And we saved it into a variable called “line”

 We then split this line based on spaces

 And we make a new list of numbers based on that

Module 7: Lists page 43© Dr Jonathan Cazalas

List Basics

 Shifting Lists

 What about shifting the elements in your list all to the
left? How would you do this?

 So assume you have a list of 10 elements

 You want to perform the following moves:
 index 1 should move to index 0

 index 2 should move to index 1

 index 3 should move to index 2

 And the original value at index 0 should be placed at index 9

 Try to do this…

Module 7: Lists page 44© Dr Jonathan Cazalas

List Basics

 Shifting Lists

 Solution

def shift(lst):

temp = lst[0] # Retain the first element

Shift elements left

for i in range(1, len(lst)):

lst[i - 1] = lst[i]

Move the first element to fill in the last position

lst[len(lst) - 1] = temp

Module 7: Lists page 45© Dr Jonathan Cazalas

List Basics

 Lists can Simplify your code!!!

 Example:
 Suppose you want to get the English name for a particular

month number

 How would you traditionally do this?

 Answer:
 Have a long if/elif/else statement to get the correct month name

 Code:
if monthNumber == 0:

print("The month is January")

elif monthNumber == 1:

print("The month is February")

...

else:

print("The month is December")

Module 7: Lists page 46© Dr Jonathan Cazalas

List Basics

 Lists can Simplify your code!!!

 Example:
 But now, using lists:

 Make a list of strings representing the months

 And for ease you can make 13 strings in this list, where the first string is
empty

 This let’s January go at the natural position of index 1

 Code:
months = ["", "January", "February", "March", ..., "December"]

month_number = int(input("Enter a month number (1 to 12): "))

print("The month is", months[month_number])

Module 7: Lists page 47© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given lst = [30, 1, 2, 1, 0], what is the list

after applying each of the following statements? Assume
that each line of code is independent.
lst.append(40)

lst.insert(1, 43)

lst.remove(1)

lst.pop(1)

lst.pop()

lst.sort()

lst.reverse()

random.shuffle(lst)

Module 7: Lists page 48© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given lst = [30, 1, 2, 1, 0], what is the list

after applying each of the following statements? Assume
that each line of code is independent.
lst.append(40) => [30, 1, 2, 1, 0, 40]

lst.insert(1, 43) => [30, 43, 1, 2, 1, 0]

lst.remove(1) => [30, 2, 1, 0]

lst.pop(1) => [30, 2, 1, 0]

lst.pop() => [30, 1, 2, 1]

lst.sort() => [0, 1, 1, 2, 30]

lst.reverse() => [0, 1, 2, 1, 30]

random.shuffle(list) => list is randomly shuffled

Module 7: Lists page 49© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given lst = [30, 1, 2, 1, 0], what is the

return value of each of the following statements?
lst.index(1)

lst.count(1)

len(lst)

max(lst)

min(lst)

sum(lst)

Module 7: Lists page 50© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given lst = [30, 1, 2, 1, 0], what is the

return value of each of the following statements?
lst.index(1) => 1

lst.count(1) => 2

len(list) => 5

max(list) => 30

min(list) => 0

sum(list) => 34

Module 7: Lists page 51© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given list1 = [30, 1, 2, 1, 0] and list2 = [1, 21, 13], what is

the return value of each of the following statements?
list1 + list2

2 * list2

list2 * 2

list1[1 : 3]

list1[3]

Module 7: Lists page 52© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given list1 = [30, 1, 2, 1, 0] and list2 = [1, 21, 13], what is

the return value of each of the following statements?
list1 + list2 => [30, 1, 2, 1, 0, 1, 21, 13]

2 * list2 => [1, 21, 13, 1, 21, 13]

list2 * 2 => [1, 21, 13, 1, 21, 13]

list1[1 : 3] => [1, 2]

list1[3] => 1

Module 7: Lists page 53© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given list1 = [30, 1, 2, 1, 0], what is the

return value of each of the following statements?
[x for x in list1 if x > 1]

[x for x in range(0, 10, 2)]

[x for x in range(10, 0, -2)]

Module 7: Lists page 54© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given list1 = [30, 1, 2, 1, 0], what is the

return value of each of the following statements?
[x for x in list1 if x > 1]

[x for x in range(0, 10, 2)]

[x for x in range(10, 0, -2)]

 Answers:
[x for x in list1 if x > 1] => [30, 2]

[x for x in range(0, 10, 2)] => [0, 2, 4, 6, 8]

[x for x in range(10, 0, -2)] => [10, 8, 6, 4, 2]

Module 7: Lists page 55© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given list1 = [30, 1, 2, 1, 0] and list2 = [1, 21, 13], what is

the return value of each of the following statements?
list1 < list2

list1 <= list2

list1 == list2

list1 != list2

list1 > list2

list1 >= list2

Module 7: Lists page 56© Dr Jonathan Cazalas

List Basics

Check Yourself
 Given list1 = [30, 1, 2, 1, 0] and list2 = [1, 21, 13], what is

the return value of each of the following statements?
list1 < list2

list1 <= list2

list1 == list2

list1 != list2

list1 > list2

list1 >= list2

False

False

False

True

True

True

Module 7: Lists page 57© Dr Jonathan Cazalas

List Basics

Check Yourself
 What are list1 and list2 after the following lines of code?

list1 = [1, 43]

list2 = [x for x in list1]

list1[0] = 22

 Answer:
 list1 is [22, 43]

 list2 is [1, 43]

Module 7: Lists page 58© Dr Jonathan Cazalas

List Basics

Check Yourself
 Write statements to do the following:

 Create a list with 100 Boolean False values.

 Assign the value 5.5 to the last element in the list.

 Display the sum of the first two elements.

 Compute the sum of the first five elements in the list.

 Find the minimum element in the list.

 Randomly generate an index and display the element of this
index in the list.

Module 7: Lists page 59© Dr Jonathan Cazalas

List Basics

Check Yourself
 Write statements to do the following:

 Create a list with 100 Boolean False values.

 Code:
lst = [False] * 100

Module 7: Lists page 60© Dr Jonathan Cazalas

List Basics

Check Yourself
 Write statements to do the following:

 Assign the value 5.5 to the last element in the list.

 Code:
lst[len(lst) – 1] = 5.5

Module 7: Lists page 61© Dr Jonathan Cazalas

List Basics

Check Yourself
 Write statements to do the following:

 Display the sum of the first two elements.

 Code:
print(lst[0] + lst[1])

Module 7: Lists page 62© Dr Jonathan Cazalas

List Basics

Check Yourself
 Write statements to do the following:

 Compute the sum of the first five elements in the list.

 Code:
total = sum(lst[0:5])

Module 7: Lists page 63© Dr Jonathan Cazalas

List Basics

Check Yourself
 Write statements to do the following:

 Find the minimum element in the list.

 Code:
minimum = min(lst)

Module 7: Lists page 64© Dr Jonathan Cazalas

List Basics

Check Yourself
 Write statements to do the following:

 Randomly generate an index and display the element of this
index in the list.

 Code:
print(list[random.randint(0, len(lst) – 1)])

Module 7: Lists page 65© Dr Jonathan Cazalas

Problem: Lotto Numbers

 So, you wanna buy lotto tickets, and each ticket
apparently has ten lotto numbers, with each of the
ten numbers chosen from a range of numbers from
1 to 99. You’ve purchased a certain amount of
tickets and would like all 99 possible numbers to be
represented on those tickets.

 In summary:

 Write a program to determine if all lotto numbers fully
cover the numbers from 1 to 99.

Module 7: Lists page 66© Dr Jonathan Cazalas

Problem: Lotto Numbers

 Write a program to determine if all lotto numbers
fully cover the numbers from 1 to 99.

 You will read ticket numbers, one per line

 The last line of input will contain a single 0
 This is how you know to stop reading (break out of loop)

 Check Portal for a text file containing test cases

 Also check portal for three different solutions:
 One using a boolean array to store used numbers

 One adding newly seen elements to a new list

 One making a list of all numbers between 1 and 99 and then
removing from that list each number seen in the tickets

Module 7:
Lists

Python Boot Camp

